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1 Preface

This book will introduce students to multivariable Calculus and linear algebra methods and
techniques to be successful in data science, statistics, computer science, and other data-driven,
computational disciplines.

The motiviation for this text is to provide both a theoretical understanding of important
multivariable methods used in data science as well as giving a hands-on experience using
software. Throughout this text, we assume the reader has a solid foundation in univariate
calculus (typically two semesters) as well as familiarity with a scripting language (e.g., R or
python).

1.1 Getting started in R

TBD

1.2 Some videos that explain useful concepts of linear algebra

• 3 Blue 1 Brown – Essence of Linear Algebra

• 3 Blue 1 Brown – Vectors

1.3 Notation

For notation, we let lowercase Roman letters represent scalar numbers (e.g., n = 5, d = 7),
lowercase bold letters represent vectors

x =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞⎟⎟⎟⎟
⎠

,
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where the elements 𝑥1,… , 𝑥𝑛 are scalars written in lowercase Roman. Note that vectors are
assumed to follow a vertical notation where the elements of the vector (the 𝑥𝑖s are stacked on
top of one another) and the order matters. For example, the vector

x = ⎛⎜
⎝

5
2
8
⎞⎟
⎠

has the first element 𝑥1 = 5, second element 𝑥2 = 2 and third element 𝑥3 = 8. Note that the

vector ⎛⎜
⎝

5
2
8
⎞⎟
⎠

is not the same as the vector ⎛⎜
⎝

8
2
5
⎞⎟
⎠

because the order of the elements matters.

We can also write the vector as

x = (𝑥1, 𝑥2,… , 𝑥𝑛)
′ ,

where the ′ symbol represents the transpose function. For our example matrix, we have

⎛⎜
⎝

5
2
8
⎞⎟
⎠

′

= (5 2 8) which is the original vector but arranged in a row rather than a column.

Likewise, the transpose of a row vector (5 2 8)′ = ⎛⎜
⎝

5
2
8
⎞⎟
⎠

is a column vector. If x is a column

vector, we say that x′ is a row vector and if x is a row vector, the x′ is a column vector.

To create a vector we can use the concatenate function c(). For example, the vector x = ⎛⎜
⎝

5
2
8
⎞⎟
⎠

can be created as the R object using

x <- c(5, 2, 8)

where the <- assigns the values in the vector c(5, 2, 8) to the object named x. To print the
values of x, we can use

x

[1] 5 2 8

which prints the elements of x. Notice that R prints the elements of x in a row; however, x is
a column vector. This inconsistency is present to allow the output to be printed in a manner
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easier to read (more numbers fit on a row). If we put the column vector into a data.frame,
then the vector will be presented as a column vector

data.frame(x)

x
1 5
2 2
3 8

One can use the index operator [ ] to select specific elements of the vector x. For example, the
first element of x, 𝑥1, is

x[1]

[1] 5

and the third element of x, 𝑥3, is

x[3]

[1] 8

The transpose function t() turns a column vector into a row vector (or a row vector into a
column vector). For example the transpose x′ of x is

tx <- t(x)
tx

[,1] [,2] [,3]
[1,] 5 2 8

where tx is R object storing the transpose of x and is a row vector. The transpose of tx.
Notice the indices on the output of the row vector tx. The index operator [1, ] selects the
first row to tx and the index operator [, 1] gives the first column tx. Taking the transpose
again gives us back the original column vector

t(tx)
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[,1]
[1,] 5
[2,] 2
[3,] 8

1.3.1 Matrices

We let uppercase bold letters A, B, etc., represent matrices. We define the matrix A with 𝑚
rows and 𝑛 columns as

A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

,

with 𝑎𝑖𝑗 being the value of the matrix A in the 𝑖th row and the 𝑗th column.

If the matrix

A =
⎛⎜⎜⎜⎜
⎝

5 7 1
5 −22 2

−14 5 99
42 −3 0

⎞⎟⎟⎟⎟
⎠

,

the elements 𝑎11 = 5, 𝑎12 = 7, 𝑎21 = 5, and 𝑎33 = 99, etc.

In R, we can define the matrix A using the matrix() function

A <- matrix(
data = c(5, 5, -14, 42, 7, -22, 5, -3, 1, 2, 99, 0),
nrow = 4,
ncol = 3

)

A

[,1] [,2] [,3]
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0
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Notice in the above creation of A, we wrote defined the elements of the A using the columns
stacked on top of one another. If we want to fill in the elements of A using the rows, we can
add the option byrow = TRUE to the matrix() function

A <- matrix(
data = c(5, 7, 1, 5, -22, 2, -14, 5, 99, 42, -3, 0),
nrow = 4,
ncol = 3,
byrow = TRUE

)
A

[,1] [,2] [,3]
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0

To select the 𝑖𝑗th elements of A, we use the subset operator [ to select the element. For
example, to get the element 𝑎11 = 5 in the first row and first column of A, we use

A[1, 1]

[1] 5

The element 𝑎3,3 = 99 in the third row and third column can be selected using

A[3, 3]

[1] 99

The matrix A can also be represented as a set of either column vectors {c𝑗}𝑛𝑗=1 or row vectors
{r𝑖}𝑚𝑖=1. For example, the column vector representation is

A = (c1|c2|⋯|c𝑛) ,

where the notation | is used to separate the vectors
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c1 =
⎛⎜⎜⎜⎜
⎝

𝑎11
𝑎21
⋮

𝑎𝑚1

⎞⎟⎟⎟⎟
⎠

, c2 =
⎛⎜⎜⎜⎜
⎝

𝑎12
𝑎22
⋮

𝑎𝑚2

⎞⎟⎟⎟⎟
⎠

, ⋯ , c𝑛 =
⎛⎜⎜⎜⎜
⎝

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

In R you can extract the columns using the [ selection operator

c1 <- A[, 1] # first column
c2 <- A[, 2] # second column
c3 <- A[, 3] # third column

and you can give the column representation of the matrix A with with column bind function
cbind()

cbind(c1, c2, c3)

c1 c2 c3
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0

The row vector representation of A is

A =
⎛⎜⎜⎜⎜
⎝

r1
r2
⋮

r𝑚

⎞⎟⎟⎟⎟
⎠

,

where the row vectors r𝑖 are

r1 = (𝑎11, 𝑎12,… , 𝑎1𝑛)
r2 = (𝑎21, 𝑎22,… , 𝑎2𝑛)

⋮
r𝑚 = (𝑎𝑚1, 𝑎𝑚2,… , 𝑎𝑚𝑛)

In R you can extract the rows using the [ selection operator

r1 <- A[1, ] # first row
r2 <- A[2, ] # second row
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r3 <- A[3, ] # third row
r4 <- A[4, ] # fourth row

and you can give the row representation of the matrix A with with row bind function rbind()

rbind(r1, r2, r3, r4)

[,1] [,2] [,3]
r1 5 7 1
r2 5 -22 2
r3 -14 5 99
r4 42 -3 0
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2 Matrix operations

2.1 ToDo

• 3 Blue 1 Brown – Matrix Multiplication

• Note: add examples:

2.2 The dot/inner product

Definition 2.1. Let u and v be vectors in ℛ𝑛. Then, the dot product (also called the inner
product) of u and v is u′v. The vectors u and v are 𝑛×1 matrices (𝑛 rows and one column)
where u′ is a 1 × 𝑛 matrix and the inner product u′v is a scalar (1 × 1 matrix). The inner
product is also sometimes called the dot product and written as u ⋅ v.

If the vectors

u =
⎛⎜⎜⎜⎜
⎝

𝑢1
𝑢2
⋮
𝑢𝑛

⎞⎟⎟⎟⎟
⎠

v =
⎛⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮
𝑣𝑛

⎞⎟⎟⎟⎟
⎠

then u′v = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯𝑢𝑛𝑣𝑛

Example 2.1. Find the inner product u′v and v′u of

u = ⎛⎜
⎝

2
−3
1
⎞⎟
⎠

v = ⎛⎜
⎝

4
−2
3
⎞⎟
⎠

• do by hand
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u <- c(2, -3, 1)
v <- c(4, -2, 3)
# u'v
sum(u*v)

[1] 17

t(u) %*% v

[,1]
[1,] 17

# v'u
sum(v*u)

[1] 17

t(v) %*% u

[,1]
[1,] 17

The properties of inner products are defined with the following theorem.

Theorem 2.1 (Inner Product). Let u, v, and w be vectors in ℛ𝑛 and let 𝑐 be a scalar. Then

a) u′v = v′u

b) (u + v)′w = u′w + v′w

c) (𝑐u)′v = 𝑐(v′u)
d) u′u ≥ 0 with u′u = 0 only when u = 0

15



2.3 Properties of matrices

2.3.1 Matrix Addition

Matrix Addition: If the matrices A and B are of the same dimension (e.g., both A and B
have the same number of rows 𝑚 and the same number of columns 𝑛), then

A + B =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

𝑏11 𝑏12 ⋯ 𝑏1𝑛
𝑏21 𝑏22 ⋯ 𝑏2𝑛
⋮ ⋮ ⋱ ⋮

𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 ⋯ 𝑎2𝑛 + 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

⎞⎟⎟⎟⎟
⎠

= {𝑎𝑖𝑗 + 𝑏𝑖𝑗}

(2.1)

… Another way to

If A and B are of the same dimension (same number of rows and columns) you can add the
matrices together

A <- matrix(c(4, 1, 33, 2, 0, -4), 3, 2)
B <- matrix(c(7, -24, 3, 9, 11, -9), 3, 2)
A

[,1] [,2]
[1,] 4 2
[2,] 1 0
[3,] 33 -4

B

[,1] [,2]
[1,] 7 9
[2,] -24 11
[3,] 3 -9

A + B
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[,1] [,2]
[1,] 11 11
[2,] -23 11
[3,] 36 -13

We can also write this using for loops

# initialize an empty matrix to fill
C <- matrix(0, 3, 2)

for (i in 1:nrow(A)) { # loop over the rows
for (j in 1:ncol(A)) { # loop over the columns

C[i, j] <- A[i, j] + B[i, j]
}

}
C

[,1] [,2]
[1,] 11 11
[2,] -23 11
[3,] 36 -13

If A and B are of different dimensions (they differ in either the number of rows or columns), R
will return an error warning you that the matrices are of different sizes and can’t be added

A <- matrix(c(4, 1, 33, 2, 0, -4), 3, 2)
B <- matrix(c(7, -24, 3, 9), 2, 2)
A

[,1] [,2]
[1,] 4 2
[2,] 1 0
[3,] 33 -4

B

[,1] [,2]
[1,] 7 3
[2,] -24 9

17



A + B

Error in A + B: non-conformable arrays

Theorem 2.2. Let A, B, and C be 𝑚× 𝑛 matrices and let 𝑎 and 𝑏 be scalars, then:

1) A + B = B + A [(commutivity of addition)]style=”float:right”

2) (A + B) + C = A + (B + C) [(commutivity of addition)]style=”float:right”

3) A + 0 = A [(additive identity)]style=”float:right”

4) 𝑎(A + B) = 𝑎A + 𝑎B [(scalar ...)]style=”float:right”

5) (𝑎 + 𝑏)A = 𝑎A + 𝑏A [(scalar ...)]style=”float:right”

6) (𝑎𝑏)A = 𝑎(𝑏A) [(scalar ...)]style=”float:right”

2.3.2 Matrix Multiplication

Matrix Multiplication: If A = {𝑎𝑖𝑗} is an 𝑚× 𝑛 matrix and B = {𝑏𝑗𝑘} is a 𝑛 × 𝑝 matrix,
then the matrix product C = AB is an 𝑚× 𝑝 matrix where C = {∑𝑛

𝑗=1 𝑎𝑖𝑗𝑏𝑗𝑘}

AB =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑏11 𝑏12 ⋯ 𝑏1𝑝
𝑏21 𝑏22 ⋯ 𝑏2𝑝
⋮ ⋮ ⋱ ⋮

𝑏𝑛1 𝑏𝑛2 ⋯ 𝑏𝑛𝑝

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

∑𝑛
𝑗=1 𝑎1𝑗𝑏𝑗1 ∑𝑛

𝑗=1 𝑎1𝑗𝑏𝑗2 ⋯ ∑𝑛
𝑗=1 𝑎1𝑗𝑏𝑗𝑝

∑𝑛
𝑗=1 𝑎2𝑗𝑏𝑗1 ∑𝑛

𝑗=1 𝑎2𝑗𝑏𝑗2 ⋯ ∑𝑛
𝑗=1 𝑎2𝑗𝑏𝑗𝑝

⋮ ⋮ ⋱ ⋮
∑𝑛

𝑗=1 𝑎𝑚𝑗𝑏𝑗1 ∑𝑛
𝑗=1 𝑎𝑚𝑗𝑏𝑗2 ⋯ ∑𝑛

𝑗=1 𝑎𝑚𝑗𝑏𝑗𝑝

⎞⎟⎟⎟⎟⎟
⎠

(2.2)

Another way to define matrix multiplication is through inner product notation. Define the
𝑚× 𝑛 matrix A and the 𝑛 × 𝑝 matrix B as the partition

A =
⎛⎜⎜⎜⎜
⎝

a′
1

a′
2
⋮

a′
𝑚

⎞⎟⎟⎟⎟
⎠

and B = (b1 b2 ⋯ b𝑝)
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where a𝑖 and b𝑘 are both 𝑛-vectors. Then, we have C = AB can be written as

AB = A (b1 b2 ⋯ b𝑝) = (Ab1 Ab2 ⋯ Ab𝑝)

Note that in this representation, each column of the matrix AB is a linear combination the
the columns of A with coefficients given by the corresponding column of B.

AB =
⎛⎜⎜⎜⎜
⎝

a′
1b1 a′

1b2 ⋯ a′
1b𝑝

a′
2b1 a′

2b2 ⋯ a′
2b𝑝

⋮ ⋮ ⋱ ⋮
a′
𝑚b1 a′

𝑚b2 ⋯ a′
𝑚b𝑝

⎞⎟⎟⎟⎟
⎠

= {a′
𝑖b𝑘} .

Written in this notation, we arrive at the multiplication rule for C = AB – the 𝑖𝑘th element
𝑐𝑖𝑘 of C is the inner product of the 𝑖th row of A and the 𝑗th column of B.

2.3.3 Properties of Matrix Multiplication

Define the 𝑚×𝑚 identity matrix I𝑚 with ones on the diagonal and zeros off diagonal as

I𝑚 =
⎛⎜⎜⎜⎜
⎝

1 0 ⋯ 0
0 1 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ 1

⎞⎟⎟⎟⎟
⎠

Let A be an 𝑚× 𝑛 matrix, then:

1) Let B be an 𝑛 × 𝑝 matrix and C a 𝑝 × 𝑞 matrix. Then A(BC) = (AB)C is an 𝑚 × 𝑞
matrix.

2) Let B and C be 𝑛 × 𝑝 matrices. Then A(B + C) = AB + AC is an 𝑚× 𝑝 matrix.

3) Let B and C be 𝑝 ×𝑚 matrices. Then (B + C)A = BA + CA is an 𝑝 ×𝑚 matrix.

4) Let B be an 𝑛 × 𝑝 matrix and 𝑐 a scalar. Then 𝑐(AB) = (𝑐A)B = A(𝑐B) is an 𝑚× 𝑝
matrix.

5) I𝑚A = AI𝑛 = A

Examples: in class

Note: Matrix multiplication violates some of the rules of multiplication that you might be
used to. Pay attention for the following:
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1) In general AB ≠ BA (sometimes these are equal, but usually are not)

2) AB = AC does not imply B = C

3) AB = 0 does not imply that A = 0 or B = 0

2.3.4 Matrix Multiplication complexity (Big O notation)

In the study of algorithms, the notation 𝑂(𝑛) is used to describe the number of calculations

that need to be done to evaluate the equation. As an example, consider A = (3 1
2 −3),

B = (−2 4
−1 2), and x = (−3

1 ).

By hand: Calculate

1) (AB)x
2) A(Bx)

Which was easier? Which required less calculation?

• Matrix-matrix multiplication of and𝑚×𝑛matrix A and an 𝑛×𝑝 matrix B has complexity
𝑂(𝑚𝑛𝑝).

• Matrix-vector multiplication of and 𝑚× 𝑛 matrix A and an 𝑛-vector x has complexity
𝑂(𝑛𝑚).

From example above:

1) 𝑂(𝑚𝑛𝑝) matrix-matrix multiplication (AB) followed by 𝑂(𝑚𝑛) matrix-vector multipli-
cation (AB)x which has computational complexity 𝑂(𝑚𝑛𝑝) + 𝑂(𝑚𝑛)

2) 𝑂(𝑚𝑛) matrix-vector multiplication (Bx) followed by 𝑂(𝑚𝑛) matrix-vector multiplica-
tion A(Bx) which has computational complexity 𝑂(𝑚𝑛) + 𝑂(𝑚𝑛)

2.3.5 Matrix powers

Powers of a 𝑛 × 𝑛 (square) matrix are defined as the product of A multiplied 𝑘 times

A𝑘 = A⋯A⏟
𝑘
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2.3.6 Matrix Transpose

The matrix transpose is an operator that swaps the rows and columns of a matrix. If A is an
𝑚 × 𝑛 matrix (𝑚 rows and 𝑛 columns), then A′ is a 𝑛 × 𝑚 matrix (𝑛 rows and 𝑚 columns.
Note: some use A𝑇 to denote a transpose; I prefer the ′ notation as it is much simpler and
cleaner notation). The matrix

A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

has transpose

A′ =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎21 ⋯ 𝑎𝑚1
𝑎12 𝑎22 ⋯ 𝑎𝑚2
⋮ ⋮ ⋱ ⋮

𝑎1𝑛 𝑎2𝑛 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

,

Theorem 2.3. Let A be an 𝑚× 𝑛 matrix, then

1) (A′)′ = A.

2) Let B be an 𝑚× 𝑛 matrix, then (A + B)′ = A′ + B′.

3) For any scalar 𝑐, (𝑐A)′ = 𝑐A′.

4) Let B be an 𝑛 × 𝑝 matrix, then (AB)′ = B′A′ is an 𝑝 ×𝑚 matrix.

Note: The power of video games: GPUs and modern CPUs are becoming more and more
parallelized. Because the 𝑖𝑗th element of AB requires only the 𝑖th row of A and the 𝑗th
column of B, matrix multiplication is easily parallelized under modern computing architectures.
Thanks to video games, this parallelization has been made faster than ever.

Examples: in class
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3 Vectors spaces

• 3 Blue 1 Brown – Linear combinations, span, and basis vectors

library(shiny)
library(patchwork)
library(tidyverse)
# if gg3D package not installed, install the package
library(gg3D)
library(dasc2594)

3.1 Vectors

3.1.1 Properties of Vectors

For any real valued scalars 𝑎, 𝑏 ∈ ℛ and any vectors x,y, z ∈ ℛ𝑛 (vectors of real numbers of
length 𝑛),

1) scalar multiplication

𝑎x = 𝑎
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎𝑥1
𝑎𝑥2
⋮

𝑎𝑥𝑛

⎞⎟⎟⎟⎟
⎠

where the scalar 𝑎 is multiplied by each element of the vector. For example,

22

https://www.3blue1brown.com/lessons/span


4
⎛⎜⎜⎜⎜
⎝

4
6
7
12

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

4 ∗ 4
4 ∗ 6
4 ∗ 7
4 ∗ 12

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

16
24
28
48

⎞⎟⎟⎟⎟
⎠

In R, we can multiply the vector by a scalar as

4 * c(4, 6, 7, 12)

[1] 16 24 28 48

or if the vector x = (4, 6, 7, 12)′ we can write this as

x <- c(4, 6, 7, 12)
4 * x

[1] 16 24 28 48

2) scalar multiplicative commutivity

𝑎(𝑏x) = (𝑎𝑏)x = 𝑏(𝑎x)

4 * (6 * x)

[1] 96 144 168 288

(4 * 6) * x

[1] 96 144 168 288

3) scalar additive associativity

𝑎x + 𝑏x = (𝑎 + 𝑏)x
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4) vector additive associativity

𝑎x + 𝑎y = 𝑎(x + y)

5) vector associativity

x + y = y + x

(x + y) + z = x + (y + z)

x <- c(1, 2, 3, 4)
y <- c(4, 3, 5, 1)
z <- c(5, 2, 4, 6)

x + y

[1] 5 5 8 5

y + x

[1] 5 5 8 5

(x + y) + z

[1] 10 7 12 11

x + (y + z)

[1] 10 7 12 11

6) Identity Element of Addition: For any vector x of length 𝑛, there exists a vector 0,
known as the zero vector, such that

x + 0 = x
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x + 0

[1] 1 2 3 4

x + rep(0, 4)

[1] 1 2 3 4

7) Inverse Element of Addition: For any vector x of length 𝑛, there exists a vector −x,
known as the additive inverse vector, such that

x + (−x) = 0

x + (-x)

[1] 0 0 0 0

3.2 Vector addition

Two vectors of length 𝑛 can be added elementwise

x + y =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

𝑦1
𝑦2
⋮
𝑦𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛

⎞⎟⎟⎟⎟
⎠

For example,
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⎛⎜⎜⎜⎜
⎝

3
1
−4
3

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

−3
17
−39
4

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

3 + (−3)
1 + 17

−4 + (−39)
3 + 4

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
18
−43
7

⎞⎟⎟⎟⎟
⎠

In R, we have

x <- c(3, 1, -4, 3)
y <- c(-3, 17, -39, 4)
x + y

[1] 0 18 -43 7

If two vectors x and y are of different lengths, then they cannot be added together. Using R,
we get the following error:

x <- c(1, 2, 3)
y <- c(1, 2, 3, 4)
x + y

Warning in x + y: longer object length is not a multiple of shorter object
length

[1] 2 4 6 5

The error is telling us that the vector x and the vector y do not have the same length.

Be careful when adding vectors in R. R uses “recycling” which means two vectors of different
lengths can be added together if one vector is of a length that is a multiple of the other vector.
For example, if x = (1, 2)′ is a vector of length 2 and y = (1, 2, 3, 4) is a vector of length 4, R
will add x + y by replicating the vector x twice (i.e., x + y = (x′,x′)′ = (1, 2, 1, 2)′ + y)

x <- c(1, 2)
y <- c(1, 2, 3, 4)
x + y
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[1] 2 4 4 6

# replicated x = c(1, 2, 1, 2)
c(1, 2, 1, 2) + y

[1] 2 4 4 6

3.2.1 The geometric interpretation of vectors in ℛ2

Let ℛ2 be a real coordinate space of 2 dimensions. You are already familiar with the Cartesian
plane that consists of ordered pairs (𝑥, 𝑦). The Cartesian plane defines the real coordinate space
R2 of two dimensions. In R2, the location of any point of interest can be defined using the 𝑥
and 𝑦. For example, the plot below shows the location of the point (2, 3)

dat <- data.frame(
x = 2,
y = 3

)

ggplot(data = dat, aes(x = x, y = y)) +
geom_point() +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4))
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A vector space is a generalization of this representation. In ℛ2, we say that the vector z =
𝑐(2, 3) is centered at the origin (0, 0) and has length 2 in the 𝑥-axis and length 3 in the 𝑦-axis.
The plot below shows this vector

−4
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4

−4 −2 0 2 4
x

y
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We can also decompose the vector z into its 𝑥 and 𝑦 components. The 𝑥 component of z is
(2, 0) and the 𝑦 component of z is (0, 3). The following plot shows the 𝑥 component (2, 0) in
blue and the 𝑦 component (0, 3) in red.
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0

2

4

−4 −2 0 2 4
x

y

The below Shiny app allows you to plot the vector for any (𝑥, 𝑦) pair of your choosing.
The shiny app can be downloaded and run on your own computer using

library(shiny)
runGitHub(rep = "multivariable-math",

username = "jtipton25",
subdir = "shiny-apps/chapter-03/vector-space")

3.2.1.1 Addition of vectors

We can represent the addition of vectors geometrically as well. Consider the two vectors u =
(3, 2) and v = (-2, 1) where u + v = (1, 3).

data.frame(x = c(3, -2, 1), y = c(2, 1, 3), vector = c("u", "v", "u+v")) %>%
ggplot() +
geom_point(aes(x = x, y = y, color = vector)) +
geom_vline(xintercept = 0) +
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geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4))
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−2

0

2

4

−4 −2 0 2 4
x

y

vector

u

u+v

v

We can represent the sum using vectors by adding u first then adding v to u or by adding v
first and then u to get

df <- data.frame(x = c(0, 3, 1, -2), y = c(0, 2, 3, 1))
p1 <- ggplot() +

geom_segment(aes(x = 0, xend = 3, y = 0, yend = 2), arrow = arrow(), color = "blue") +
geom_segment(aes(x = 3, xend = 3 - 2, y = 2, yend = 2 + 1), arrow = arrow(), color = "red") +
geom_segment(aes(x = 0, xend = 3 - 2, y = 0, yend = 2 + 1), arrow = arrow(), color = "black") +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_polygon(data = df, aes(x = x, y = y), fill = "grey", alpha = 0.5) +
ggtitle("u + v")

p2 <- ggplot() +
geom_segment(aes(x = 0, xend = -2, y = 0, yend = 1), arrow = arrow(), color = "red") +
geom_segment(aes(x = -2, xend = -2 + 3, y = 1, yend = 1 + 2), arrow = arrow(), color = "blue") +
geom_segment(aes(x = 0, xend = 3 - 2, y = 0, yend = 2 + 1), arrow = arrow(), color = "black") +
geom_vline(xintercept = 0) +
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geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_polygon(data = df, aes(x = x, y = y), fill = "grey", alpha = 0.5) +
ggtitle("v + u")

p1 + p2

−4

−2

0

2

4

−4 −2 0 2 4
x

y

u + v

−4

−2

0

2

4

−4 −2 0 2 4
x

y

v + u

Notice that the sum of these vectors defines a parallelogram where the sum u + v is the
diagonal of the shaded parallelogram. This geometric interpretation will serve as a basis for
interpreting vector equations in higher dimensions where typical visualization methods fail.

3.2.2 Scalar multiplication of vectors

We can represent the multiplication of a vector by a scalar geometrically as well. Consider the
vector u = (3, 2) and the scalars 𝑎 = 2 and 𝑏 = −1. Then, we can plot u, 𝑎u, and 𝑏u.

data.frame(x = c(3, 2 * 3, -1 * 3), y = c(2, 2 * 2, -1 * 2), vector = c("u", "a*u", "b*u")) %>%
ggplot() +
geom_point(aes(x = x, y = y, color = vector)) +
geom_segment(aes(x = 0, xend = x, y = 0, yend = y, color = vector), arrow = arrow(), alpha = 0.75) +
geom_vline(xintercept = 0) +
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geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-6, 6), ylim = c(-6, 6))
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−3

0

3

6

−6 −3 0 3 6
x

y

vector

a*u

b*u

u

In fact, if 𝑎 is allowed to take on any values, then the set of all possible values of 𝑎u for all
values of 𝑎 defines an infinite line

ggplot() +
geom_abline(slope = 2/3, intercept = 0) +
geom_point(aes(x = 3, y = 2)) +
geom_segment(aes(x = 0, xend = 3, y = 0, yend = 2), arrow = arrow(), color = "black") +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4))
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3.2.3 The geometric interpretation of vectors in ℛ3

Let the vector u = 𝑐(−2, 3, 5). Then, the figure below shows the vector in 3 dimensions.

Draw picture by hand

3.2.4 The geometric interpretation of vectors in ℛ𝑛

As the number of dimensions increases, the same interpretation can be used, but the ability
to visualize higher dimensions becomes more difficult.

3.2.5 Linear Combinations of Vectors

We say that for any two scalars 𝑎 and 𝑏 and any two vectors x and y of length 𝑛, the sum

𝑎x + 𝑏y =
⎛⎜⎜⎜⎜
⎝

𝑎𝑥1 + 𝑏𝑦1
𝑎𝑥2 + 𝑏𝑦2

⋮
𝑎𝑥𝑛 + 𝑏𝑦𝑛

⎞⎟⎟⎟⎟
⎠
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is called a linear combination. The idea of a linear combination can be extended to 𝐾 different
scalars {𝑎1,… , 𝑎𝐾} and 𝐾 different vectors {x1,… ,x𝐾} each of length 𝑛 as

𝑎1x1 + 𝑎2x2 +…+ 𝑎𝐾x𝐾 =
𝐾
∑
𝑘=1

𝑎𝑘x𝑘 =
⎛⎜⎜⎜⎜⎜
⎝

∑𝐾
𝑘=1 𝑎𝑘𝑥𝑘1

∑𝐾
𝑘=1 𝑎𝑘𝑥𝑘2

⋮
∑𝐾

𝑘=1 𝑎𝑘𝑥𝑘𝑛

⎞⎟⎟⎟⎟⎟
⎠

The scalars 𝑎𝑘 are called coefficients (sometimes also called weights).

• Example: Consider the linear combination 𝑎u + 𝑏v where

u = (3
6) v = (−2

1 ) .

Are there values of 𝑎 and 𝑏 such 𝑎u + 𝑏v = ( 9
−4)? To answer this question, we can write the

linear combination as

𝑎(3
6) + 𝑏(−2

1 ) = ( 9
−4)

which can be written using the property of scalar multiplication as

(3𝑎
6𝑎) + (−2𝑏

𝑏 ) = ( 9
−4)

and using properties of vector addition can be written as

(3𝑎 − 2𝑏
6𝑎 + 𝑏 ) = ( 9

−4)

Recognizing this as a system of linear equations

3𝑎 − 2𝑏 = 9
6𝑎 + 𝑏 = −4,

the system of equations can be written in an augmented matrix form as

(3 −2 9
6 1 −4)
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Reducing the augmented matrix to reduced row echelon form gives

rref(matrix(c(3, 6, -2, 1, 9, -4), 2, 3))

[,1] [,2] [,3]
[1,] 1 0 0.06666667
[2,] 0 1 -4.40000000

which has solutions 𝑎 = 0.0667 and 𝑏 = −4.4.

• Result: Any vector equation 𝑎1x1 + 𝑎2x2 +…+ 𝑎𝐾x𝐾 = c for a given constant vector
b has the same solution set as the augmented matrix

(x1 x2 ⋯ x𝐾 b)

Equivalently, the set of vectors {x𝑘}𝐾𝑘=1 can only be combined with linear coefficients {𝑎𝑘}𝐾𝑘=1
to equal the vector b if the linear system of equations is consistent.

3.2.6 The geometric interpretation of linear combinations of vectors

Consider the vectors u = (
√
2

−
√
2) and v = (1

1) shown in the figure below on the left.
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integer linear combinations 
of u and v
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• Exercise: Given u = ( 3
−1) and v = (0

1), estimate the linear combination of u and v

that gives the point w in the figure below.

u

v

w
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−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
x

y

integer linear combinations 
of u and v

3.3 Span

Definition 3.1 (Span). Let a1,… ,a𝐾 be vectors in ℛ𝑛. We say the vector w is in the
span of a1,… ,a𝐾 (w ∈ span{a1,… ,a𝐾}) if there exists coefficients 𝑥1,… , 𝑥𝐾 such that w =
∑𝐾

𝑘=1 𝑥𝑘a𝑘.

Example 3.1. While not a vector notation, you already understand the span from polynomial
functions. For example, assume you have the functions 1, 𝑥, and 𝑥2. Then, the functions
−4 + 3𝑥2 (𝑎1 = −4, 𝑎2 = 0, 𝑎3 = 3) and −3 + 4𝑥 − 2𝑥2 (𝑎1 = −3, 𝑎2 = 4, 𝑎3 = −2) are in
the span of functions {1, 𝑥, 𝑥2}, but the functions 𝑥3, 𝑥4 − 2𝑥2, etc., are not in the span of
{1, 𝑥, 𝑥2} because you cannot write these as a linear combination of 𝑎11 + 𝑎2𝑥 + 𝑎3𝑥2.

36



3.3.1 Geometric example of the span

• Example: Consider the vector u = (2
1). Then, the vector w = (4

2) is in the span{u}

because w = 2u but the vector v = ( 4
−4) is not in the span{u} because there is no

coefficient 𝑎 such that w = 𝑎u. In this example, the vector u is a 2-dimensional vector
(lives in ℛ2–a plane) but the span{u} lives in 1-dimension (a line).

ggplot() +
geom_abline(slope = 1/2, intercept = 0, color = "blue", size = 2) +
geom_segment(aes(x = 0, xend = 2, y = 0, yend = 1), arrow = arrow(length = unit(0.1, "inches")), size = 1.5, color = "red") +
geom_segment(aes(x = 0, xend = 4, y = 0, yend = 2), arrow = arrow(length = unit(0.1, "inches")), size = 1.5, color = "red") +
geom_segment(aes(x = 0, xend = 4, y = 0, yend = -4), arrow = arrow(length = unit(0.1, "inches")), size = 1.5, color = "orange") +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_text(data = data.frame(x = c(2, 4, 4), y = c(1, 2, -4), text = c("u", "w", "v")),

aes(x = x, y = y + 0.5, label = text), size = 5, inherit.aes = FALSE,
color = c("red", "red", "orange")) +

ggtitle("span{u} is the blue line \nw is in span{u}\nv is not in span{u}")

u
w

v
−4

−2

0

2

4

−4 −2 0 2 4
x

y

span{u} is the blue line 
w is in span{u}
v is not in span{u}
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From the example above, we can answer the question “Is the point (a, b) on the line defined
by the vector u?” by asking whether the point (a, b) is in the 𝑠𝑝𝑎𝑛{u}. While this is trivial
for such a simple problem, the use of the span will make things easier in higher dimensions.

• Example: do in class 2 3-d vectors that are not scalar multiples of each other define
a plane. Does a point lie within the plane? Use the span to answer this question.

The shiny app below demonstrates how the concept of span can be understood in 2 dimensions.
The app can be downloaded and run

library(shiny)
runGitHub(rep = "multivariable-math",

username = "jtipton25",
subdir = "shiny-apps/chapter-03/span")
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4 Linear Systems of Equations

library(tidyverse)

# For 3-d plotting
# if devtools package not installed, install the package
if (!require(devtools)) {

install.packages("devtools")
}
# if gg3D package not installed, install the package
if (!require(gg3D)) {

devtools::install_github("AckerDWM/gg3D")
library(gg3D)

}

# if dasc2594 package not installed, install the package
if (!require(dasc2594)) {

devtools::install_github("jtipton25/dasc2594")
library(dasc2594)

}

4.1 Linear Systems of equations

4.1.1 Linear equations

Definition 4.1 (Linear Equations). Let 𝑥1, 𝑥2,… , 𝑥𝑛 be variables with coefficients
𝑎1, 𝑎2,… , 𝑎𝑛, and 𝑏 are fixed and known numbers. Then, we say

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏 (4.1)

is a linear equation.
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Example 4.1. Show the equation for a line with slope 𝑚 and 𝑦-intercept 𝑏 is

𝑦 = 𝑚𝑥 + 𝑏,

is a linear equation.

Solution
The equation for a line with slope 𝑚 and 𝑦-intercept 𝑏 is

𝑦 = 𝑚𝑥 + 𝑏,
is a linear equation because it can be re-written as

𝑦 −𝑚𝑥 = 𝑏,
where 𝑎1 = 1, 𝑎2 = 𝑚, 𝑥1 = 𝑦, 𝑥2 = 𝑥, and 𝑏 = 𝑏.

Example 4.2. Determine if the equation below is a linear equation

√
19𝑥1 = (4 +

√
2)𝑥2 − 𝑥3 − 9.

Solution
The equation

√
19𝑥1 = (4 +

√
2)𝑥2 − 𝑥3 − 9

is a linear equation because it can be written as
√
19𝑥1 − (4 +

√
2)𝑥2 + 𝑥3 = −9

where 𝑎1 =
√
19, 𝑎2 = 4 +

√
2, 𝑎3 = 1 and 𝑏 = −9

Example 4.3. Determine if the equation below is a linear equation

−4𝑥1 + 5𝑥2 − 11 = 𝑥3.
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Solution
The equation

−4𝑥1 + 5𝑥2 − 11 = 𝑥3

is a linear equation because it can be written as

−4𝑥1 + 5𝑥2 − 𝑥3 = 11.

Example 4.4. Determine if the equation

𝑥1 = 𝑥2
2 + 3

is a linear equation.

Solution
The equation

𝑥1 = 𝑥2
2 + 3

is not a linear equation because it does not meet the form of Equation 4.1 because the
equation has a quadratic power of 𝑥2.

Example 4.5. Determine if the equation

𝑥1 + 𝑥2 − 𝑥1𝑥2 = 16

is a linear equation.

Solution
The equation

𝑥1 + 𝑥2 − 𝑥1𝑥2 = 16
is not a linear equation because it does not meet the form of Equation 4.1 because there
is a product 𝑥1𝑥2 of 𝑥1 and 𝑥2.
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Example 4.6. Is the following equation a linear equation? 𝑥1 + 3𝑥1𝑥2 = 5

Solution
This is a linear equation because the equation can be written as 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏 where
𝑎1 = 1, 𝑎2 = 3 and 𝑏 = 5

Example 4.7. Is the following equation a linear equation? 5𝑥 + 7𝑦 + 8𝑧 = 11.2

Solution
This is a linear equation because the equation can be written as 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 𝑏
where 𝑎1 = 5, 𝑎2 = 7, 𝑎3 = 8 and 𝑏 = 11.2. The variables 𝑥1 = 𝑥, 𝑥2 = 𝑦, and 𝑥3 = 𝑧.

Example 4.8. Is the following equation a linear equation? 1
4𝑦 +

√
2𝑧 = 26

Solution
This is a linear equation because the equation can be written as 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏 where
𝑎1 = 1

4 , 𝑎2 =
√
2, and 𝑏 = 26. The variables 𝑥1 = 𝑦, 𝑥2 = 𝑧 enter the equation linearly.

Example 4.9. Is the following equation a linear equation? 𝑥 + 4𝑦2 = 9

Solution
This is not a linear equation because the equation cannot be written as 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏
because 𝑥1 = 𝑥 and 𝑥2 = 𝑦 so that the equation is written as 𝑎1𝑥1 + 𝑎2𝑥2

2 = 𝑏 where
𝑎1 = 1, 𝑎2 = 4, and 𝑏 = 9. The variable 𝑥2 = 𝑦 enters the equation in a non-linear
(quadratic) manner.
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4.1.2 Systems of linear equations

Definition 4.2 (System of Equations). A set of two or more linear equations that each contain
the same set of variables is called a system of linear equations.

Example 4.10. Determine if the following equations are a system of linear equations.

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 = 9.

Solution
The set of equations

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 = 9.

are a system of equations. Note that in the second equation, the coefficient for 𝑥3 is 0,
meaning we could re-write the above example as

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 0𝑥3 = 9.

Example 4.11. Determine if the following equations are a system of linear equations.

𝑥1 + 4𝑥1𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 2𝑥3 = 𝜋.

Solution
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The set of equations

𝑥1 + 4𝑥1𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 2𝑥3 = 𝜋

are not a linear system of equations. Note that in the first equation, there is a nonlinear
term 𝑥1𝑥2 and because of this, equation one cannot be written in the form of Equation 4.1.

For the remainder of the section on linear algebra, we will focus on linear equations.

4.1.3 Solutions of linear systems

A fundamental question when presented with a linear system of equations is whether the
system has a solution.

Definition 4.3 (Solution of Systems of Equations). A solution to a system means that there
are numbers (𝑠1, 𝑠2,… , 𝑠𝑛) that each of the variables 𝑥1, 𝑥2,… , 𝑥𝑛 take that allow for all the
equations to simultaneously be true.

Checking if a vector is a solution is straightforward. You just substitute the values of the
vector into the equations and see if the equations are satisfied. For example, if we consider the
equation

𝑥1 + 𝑥2 = 7,

the vector x = (𝑥1
𝑥2

) = (4
3) is a valid solution because

4 + 3 = 7

but the vector x = (𝑥1
𝑥2

) = (5
9) is not a valid solution because

5 + 9 ≠ 7.

Example 4.12. Is x = ⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

5
3
6
⎞⎟
⎠

a solution to the system of equations

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 0𝑥3 = 9?
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Solution
First, we plug in the values for 𝑥1 = 5, 𝑥2 = 3 and 𝑥3 = 6 into the system of equations.
In the first equation, we get

5 + 4 × 3 − 6 = 11

which is true because 11 = 11. Now we consider the second equation

4 × 5 + 5 × 3 + 0 × 6 = 9.

which is false because 35 ≠ 9. Thus, x = ⎛⎜
⎝

5
3
6
⎞⎟
⎠

is not a solution to the system of equations

in the given example.

Example 4.13. Finding a solution a system of equations is more challenging. To find a solu-
tion, we add/subtract equations to cancel out variables. For example, consider the following
example. You work in a small zoo. In the zoo, there are ostriches (one head, two legs, and no
horns), one-horned rhinos (one head, four legs, and one horn), and two-horned antelope (one
head, four legs, and two horns). Consider the following statements about the set of animals
in the zoo:

1) There are 12 heads

2) There are 38 feet

3) There are 10 horns

Using this information, how many ostriches, rhinos, and antelope are there.

Solution
Letting the variable 𝑜 represent the number of ostriches, 𝑟 represent the number of
rhinos, and 𝑎 represent the number of antelope. Then, the three statements above can
be represented mathematically by the system of equations

𝑜 + 𝑟 + 𝑎 = 12
2𝑜 + 4𝑟 + 4𝑎 = 38
0𝑜 + 𝑟 + 2𝑎 = 10.
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Looking at the third equation, we can solve for the number of rhinos 𝑟 as 𝑟 = 10 − 2𝑎.
Substituting this into the first two equations gives

𝑜 + 10 − 2𝑎 + 𝑎 = 12

and

2𝑜 + 4(10 − 2𝑎) + 4𝑎 = 38

The first equation from above gives 𝑜 + 10 − 2𝑎 + 𝑎 = 12 and solving for 𝑜 as a function
of 𝑎 gives 𝑜 = 2 + 𝑎. The second equation from above gives 2𝑜 + 4(10 − 2𝑎) + 4𝑎 = 38
and solving for 𝑜 as a function of 𝑎 gives 𝑜 = 2𝑎 − 1. Combining both of these gives
2+𝑎 = 2𝑎−1 which gives 𝑎 = 3 so that we know there are 3 antelope. Going backwards,
we know that 𝑜 = 2𝑎 − 1 and plugging in 𝑎 = 3 gives 𝑜 = 5 which tells us that there are
5 ostriches in the zoo. In addition, we know that 𝑟 = 10 − 2𝑎 and, when plugging in the
value 𝑎 = 3, we find that there are 𝑟 = 4 rhinos at the zoo.
While solving for variables like above is possible, it can be quite difficult to keep track
of the steps in the calculation. To simplify the process, one can add and subtract entire
equations. For example, starting with the system of equations from the zoo example

𝑜 + 𝑟 + 𝑎 = 12
2𝑜 + 4𝑟 + 4𝑎 = 38
0𝑜 + 𝑟 + 2𝑎 = 10.

we can add and subtract entire equations. For example, take the second equation and
subtract 2 times the first equation to get the system of equations

𝑜 + 𝑟 + 𝑎 = 12
2𝑜 − 2 × 𝑜 + 4𝑟 − 2 × 𝑟 + 4𝑎 − 2 × 𝑎 = 38 − 2 × 12

0𝑜 + 𝑟 + 2𝑎 = 10,

which, when simplified is

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 2𝑟 + 2𝑎 = 14
0𝑜 + 𝑟 + 2𝑎 = 10.

Taking the third equation and subtracting 1
2 times the second equation gives

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 2𝑟 + 2𝑎 = 14

0𝑜 + 𝑟 − 1
2 × 2𝑟 + 2𝑎 − 1

2 × 2𝑎 = 10 − 1
2 × 14,
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which is the system of equations

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 2𝑟 + 2𝑎 = 14
0𝑜 + 0𝑟 + 𝑎 = 3.

Because 𝑎 = 3, there are 3 antelope at the zoo. Now, we can use these systems of
equations to subtract 2 times the third equation from the second equation to get

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 2𝑟 + 2𝑎 − 2 × 𝑎 = 14 − 2 × 3
0𝑜 + 0𝑟 + 𝑎 = 3,

which gives the system of equations

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 2𝑟 + 0𝑎 = 8
0𝑜 + 0𝑟 + 𝑎 = 3,

and dividing the second equation by 2 gives

𝑜 + 𝑟 + 𝑎 = 12
0𝑜 + 𝑟 + 0𝑎 = 4
0𝑜 + 0𝑟 + 𝑎 = 3,

so that we know there are 4 rhinos in the zoo. Taking the first equation and subtracting
the second equation gives the system of equations

𝑜 + 𝑟 − 𝑟 + 𝑎 = 12 − 4
0𝑜 + 𝑟 + 0𝑎 = 4
0𝑜 + 0𝑟 + 𝑎 = 3,

which is

𝑜 + 0𝑟 + 𝑎 = 8
0𝑜 + 𝑟 + 0𝑎 = 4
0𝑜 + 0𝑟 + 𝑎 = 3,

and subtracting the third equation from the first equation gives

𝑜 + 0𝑟 + 𝑎 − 𝑎 = 8 − 3
0𝑜 + 𝑟 + 0𝑎 = 4
0𝑜 + 0𝑟 + 𝑎 = 3,
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which gives

𝑜 + 0𝑟 + 0𝑎 = 5
0𝑜 + 𝑟 + 0𝑎 = 4
0𝑜 + 0𝑟 + 𝑎 = 3,

which tells us that there are 𝑜 = 5 ostriches at the zoo.

Example 4.14. Consider the system of equations

𝑥 + 4𝑦 = 8
4𝑥 + 5𝑦 = 7.

Find a solution to the system of equations.

Solution
To find if a solution to this equation exists, we can do some algebra and take 4 times
the top equation and then subtract the bottom equation, replacing the bottom equation
with this new sum like

𝑥 + 4𝑦 = 8
4𝑥 − 4 × (𝑥) + 5𝑦 − 4 × (4𝑦) = 7 − 4 × (8),

where the part of the equations in (⋅) is the top equation. This system of equations now
simplifies to

𝑥 + 4𝑦 = 8
0 + −11𝑦 = −25,

which gives 𝑦 = 25
11 . Plugging this value into the top equation gives

𝑥 + 42511 = 8

0 + 𝑦 = 25
11,
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where we can solve 𝑥 = 8 − 100
11 = −12

11 giving the solution of the form

𝑥 + 0 = −12
11

0 + 𝑦 = 25
11,

In this case, the system of equation has the solution 𝑥 = −12
11 and 𝑦 = 25

11 . While finding
the solution can be done algebraically, what does this mean visually (geometrically)? The
original equations were

𝑥 + 4𝑦 = 8
4𝑥 + 5𝑦 = 7,

which, writing 𝑦 as a function of 𝑥 define two lines:

1) 𝑦 = −𝑥
4 + 2

2) 𝑦 = −4𝑥
5 + 7

5

Let’s plot these equations in R and see what they look like

# define some grid points to evaluate the line
x <- seq(-2, 2, length = 1000)
dat <- data.frame(

x = c(x, x),
y = c(-x / 4 + 2, - 4 / 5 * x + 7/5),
equation = factor(rep(c(1, 2), each = 1000))

)
glimpse(dat)

Rows: 2,000
Columns: 3
$ x <dbl> -2.000000, -1.995996, -1.991992, -1.987988, -1.983984, -1.979~
$ y <dbl> 2.500000, 2.498999, 2.497998, 2.496997, 2.495996, 2.494995, 2~
$ equation <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~

dat %>%
ggplot(aes(x = x, y = y, color = equation, group = equation)) +
geom_line() +
scale_color_viridis_d(end = 0.8) +
# solution x = -12/11, y = 25/11
geom_point(aes(x = -12/11, y = 25/11), color = "red", size = 2) +
ggtitle("Linear system of equations")
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Figure 4.1: Linear system of equations with one solution

From this plot, it is clear that the solution to the system of equations is the location
where the two lines intersect!

START BACK HERE WITH MORE EXAMPLES OF CANCELING VARI-
ABLES

4.1.4 Types of solutions

Typically, there are 3 cases for the solutions to a system of linear equations

1) There are no solutions
2) There is one solution (Figure 4.1)
3) There are infinitely many solutions

Definition 4.4. A linear system of equations is called consistent if the system has either
one or infinitely many solutions and is called inconsistent if the system has no solution.
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4.1.4.1 There are no solutions:

Consider the system of linear equations

𝑥 + 4𝑦 = 8
4𝑥 + 16𝑦 = 18.

# define some grid points to evaluate the line
x <- seq(-2, 2, length = 1000)
dat <- data.frame(

x = c(x, x),
y = c(-x / 4 + 8 / 4, - x / 4 + 18 / 4),
equation = factor(rep(c(1, 2), each = 1000))

)
glimpse(dat)

Rows: 2,000
Columns: 3
$ x <dbl> -2.000000, -1.995996, -1.991992, -1.987988, -1.983984, -1.979~
$ y <dbl> 2.500000, 2.498999, 2.497998, 2.496997, 2.495996, 2.494995, 2~
$ equation <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~

dat %>%
ggplot(aes(x = x, y = y, color = equation, group = equation)) +
geom_line() +
scale_color_viridis_d(end = 0.8) +
# solution x = -12/11, y = 25/11
ggtitle("Linear system of equations")
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Figure 4.2: Linear system of equations with no solution

In this case, the linear equations are parallel lines and will never intersect so therefore there
is no solution.

Solution
To find if a solution to this equation exists, we can do some algebra and take 4 times
the top equation and then subtract the bottom equation, replacing the bottom equation
with this new sum like

𝑥 + 4𝑦 = 8
4𝑥 − 4(𝑥) + 16𝑦 − 4 × (4𝑦) = 18 − 4 × (8).

where the part of the equations in () is the top equation. This system of equations now
simplifies to

𝑥 + 4𝑦 = 8
0𝑥 + 0𝑦 = −14,

which gives 0 = −14. From this, we see that we have reached a contradiction so there is
not a solution to the system of equations.
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4.1.4.2 There is one solution:

Consider the system of equations from Example 4.14

𝑥 + 4𝑦 = 8
4𝑥 + 5𝑦 = 7.

Where we found that there was a unique solution 𝑥 = −12
11 and 𝑦 = 25

11 . While finding the
solution can be done algebraically, what does this mean visually (geometrically)? The original
equations were

𝑥 + 4𝑦 = 8
4𝑥 + 5𝑦 = 7,

which, writing 𝑦 as a function of 𝑥 define two lines:

1) 𝑦 = −𝑥
4 + 2

2) 𝑦 = −4𝑥
5 + 7

5

Let’s plot these equations in R and see what they look like

# define some grid points to evaluate the line
x <- seq(-2, 2, length = 1000)
dat <- data.frame(

x = c(x, x),
y = c(-x / 4 + 2, - 4 / 5 * x + 7/5),
equation = factor(rep(c(1, 2), each = 1000))

)
glimpse(dat)

Rows: 2,000
Columns: 3
$ x <dbl> -2.000000, -1.995996, -1.991992, -1.987988, -1.983984, -1.979~
$ y <dbl> 2.500000, 2.498999, 2.497998, 2.496997, 2.495996, 2.494995, 2~
$ equation <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~

dat %>%
ggplot(aes(x = x, y = y, color = equation, group = equation)) +
geom_line() +
scale_color_viridis_d(end = 0.8) +
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# solution x = -12/11, y = 25/11
geom_point(aes(x = -12/11, y = 25/11), color = "red", size = 2) +
ggtitle("Linear system of equations")
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Figure 4.3: Linear system of equations with one solution

From this plot, it is clear that the solution to the system of equations is the point where the
two lines intersect!

4.1.4.3 There are infinitely many solutions:

Consider the system of linear equations

𝑥 + 4𝑦 = 8
4𝑥 + 16𝑦 = 32.

# define some grid points to evaluate the line
x <- seq(-2, 2, length = 1000)
dat <- data.frame(

x = c(x, x),
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y = c(-x / 4 + 8 / 4, - 4 * x / 16 + 32 / 16),
equation = factor(rep(c(1, 2), each = 1000))

)
glimpse(dat)

Rows: 2,000
Columns: 3
$ x <dbl> -2.000000, -1.995996, -1.991992, -1.987988, -1.983984, -1.979~
$ y <dbl> 2.500000, 2.498999, 2.497998, 2.496997, 2.495996, 2.494995, 2~
$ equation <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~

dat %>%
ggplot(aes(x = x, y = y, color = equation, group = equation)) +
geom_line() +
scale_color_viridis_d(end = 0.8) +
# solution x = -12/11, y = 25/11
ggtitle("Linear system of equations")
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Figure 4.4: Linear system of equations with no solution

In this case, the linear equations are perfectly overlapping lines and always intersect so therefore
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there are infinitely many solutions (all points on the line).

Definition 4.5. Two linear systems of equations are called equivalent if both systems share
the same solution set.

For example, the system of equations

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 2𝑥3 = 9

and the system of equations

2𝑥1 + 8𝑥2 − 2𝑥3 = 22
8𝑥1 + 10𝑥2 + 4𝑥3 = 18.

have the same solution set (the second set of equations is just 2 times the first set of equa-
tions).

Example 4.15. For the following system of equations, determine if a solution(s) exist and if
so, solve for the solution

4𝑥1 + 5𝑥2 = 8
9𝑥1 − 3𝑥2 = 4.

Solution
Multiply the first equation by 1

4 and the second equation by 1
9 to get

𝑥1 +
5
4𝑥2 = 2

𝑥1 −
1
3𝑥2 = 4

9.

Subtract the first equation from the second equation

𝑥1 +
5
4𝑥2 = 2

0 − (−1
3 − 5

4)𝑥2 = 4
9 − 2,
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which reduces to

𝑥1 +
5
4𝑥2 = 2

0 − −19
12𝑥2 = −14

9 ,

so that, dividing both sides of the second equation by −19
12 gives 𝑥2 = 56

57 . Plugging this
value of 𝑥2 into the first equation gives

𝑥1 +
5
4 (56

57) = 2

0 − 𝑥2 = 56
57

and subtracting 5
4
56
57 from both sides of the first equation gives 𝑥1 = 44

57 . You can check
these solutions by verifying that the following two equations hold

4(44
57) + 5(56

57) = 8

9(44
57) − 3(56

57) = 4

which can be done in R using

x1 <- 44/57
x2 <- 56/57
all.equal(4 * x1 + 5 * x2, 8)

[1] TRUE

all.equal(9 * x1 - 3 * x2, 4)

[1] TRUE

Example 4.16. For the following system of equations, determine if a solution(s) exist and if
so, solve for the solution

7𝑥1 + 3𝑥2 + 4𝑥3 = 5
4𝑥1 − 5𝑥2 = −2
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Solution
Multiply the first equation by 1

7 and the second equation by 1
4 to get

𝑥1 +
3
7𝑥2 +

4
7𝑥3 = 5

7
𝑥1 −

5
4𝑥2 + 0𝑥3 = −1

2 .

Subtract the first equation from the second equation

𝑥1 +
3
7𝑥2 +

4
7𝑥3 = 5

7
0𝑥1 + (−5

4 − 3
7)𝑥2 +−4

7𝑥3 = −1
2 − 5

7,

which reduces to

𝑥1 +
3
7𝑥2 +

4
7𝑥3 = 5

7
0 − −47

28𝑥2 −
4
7𝑥3 = −17

14.

Next, divide the second equation by −47
28 gives

𝑥1 +
3
7𝑥2 +

4
7𝑥3 = 5

7
0 + 𝑥2 +

16
47𝑥3 = 34

47 .

Then, take the first equation and subtract −3
7 times the second row to get

𝑥1 + 0𝑥2 +
20
47𝑥3 = 19

47
0 + 𝑥2 +

16
47𝑥3 = 34

47 ,

which gives the solution 𝑥1 + 20
47𝑥3 = 19

47 , 𝑥2 + 16
47𝑥3 = 34

47 , and 𝑥3 = 𝑥3 is a free variable.
The solution can be checked in R using

# this is a free variable, you can assign it any value
x3 <- 3
x1 <- 19/47 - 20/47 * x3
x2 <- 34/47 - 16/47 * x3
# check the first equation
all.equal(7 * x1 + 3 * x2 + 4 * x3, 5)
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[1] TRUE

# check the second equation
all.equal(4 * x1 - 5 * x2 + 0 * x3, -2)

[1] TRUE

Example 4.17. For the following system of equations, determine if a solution(s) exist and if
so, solve for the solution

4𝑥1 − 2𝑥2 = 8
2𝑥1 + 𝑥2 = 7

−3𝑥1 + 6𝑥2 = 11

Solution
Multiply the first equation by 1

4 , the second equation by 1
2 , and the third equation by

−1
3 to get

𝑥1 −
1
2𝑥2 = 2

𝑥1 +
1
2𝑥2 = 7

2
𝑥1 − 2𝑥2 = −11

3
Subtract the first equation from the second equation and also subtract the first equation
from the third equation. Thus, we get

𝑥1 −
1
2𝑥2 = 2

0𝑥1 + 𝑥2 = 3
2

0𝑥1 −
3
2𝑥2 = −17

3 .

Then, multiply the third equation by −2
3 to get

𝑥1 −
1
2𝑥2 = 2

0𝑥1 + 𝑥2 = 3

0𝑥1 + 𝑥2 = −34
9 .
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Notice that the second equation gives 𝑥2 = 3 while the third equation gives 𝑥2 = −34
9 .

This is a contradiction (3 ≠ −34
9 ) which implies that the system of equations does not

have a solution. Thus we say the system of equations is inconsistent.

4.1.5 Elementary row and column operations on matrices

The elementary row (column) operations include

1) swaps: swapping two rows (columns),
2) sums: replacing a row (column) by the sum itself and a multiple of another row (column)
3) scalar multiplication: replacing a row (column) by a scalar multiple times itself

Note that these operations are exactly what we used to solve the equation using algebra above
(except for swapping rows).

Example 4.18. For the elementary row operations listed above, we demonstrate these using
the matrix

⎛⎜
⎝

1 4 7
2 5 8
3 6 9

⎞⎟
⎠

The matrix A can be represented in R using

A <- matrix(c(1:9), 3, 3, byrow = FALSE)

1) Swap the first and second rows.

2) Add -3 times the first row to the third row.

3) Multiply the second row by 1
2 .

Solution
Here we present examples of the elementary row operations

1) Swap the first and second rows.

The matrix with the first and second rows swapped is

(2 5 8
1 4 7)
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Notice that the first and second rows have now switched places. This can be done in R
in a variety of ways. First, we extract the rows and place them “by hand” in R.

A <- matrix(c(1:9), 3, 3, byrow = FALSE)
# extract the rows
row1 <- A[1, ]
row2 <- A[2, ]
# swap the rows
A[1, ] <- row2
A[2, ] <- row1
A

[,1] [,2] [,3]
[1,] 2 5 8
[2,] 1 4 7
[3,] 3 6 9

Another way to do this is to use the function rbind() that binds rows together into a
matrix.

A <- matrix(c(1:9), 3, 3, byrow = FALSE)
# bind row 2, row 1, and row 3 togethter
rbind(A[2, ], A[1, ], A[3, ])

[,1] [,2] [,3]
[1,] 2 5 8
[2,] 1 4 7
[3,] 3 6 9

Yet another way to swap the first two rows is to use a vectorized operation. This allows
for fast and efficient coding and computing. The vectorized row swap is

A <- matrix(c(1:9), 3, 3, byrow = FALSE)
# Take the 2nd, 1st, and 3rd row of A, in that order
A[c(2, 1, 3), ]

[,1] [,2] [,3]
[1,] 2 5 8
[2,] 1 4 7
[3,] 3 6 9

2) Add -3 times the first row to the third row.
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First, we notice that -3 times the first row gives the row vector (−3 −12 −21).
Then, we add this to the row vector of the third row (3 6 9) to get the row vec-
tor (0 −6 −12). Finally, this row vector replaces the third row of the matrix to give
the result

⎛⎜
⎝

1 4 7
2 5 8
0 −6 −12

⎞⎟
⎠

Note: Notice that by performing this row sum and replacement, we have made the first
column of the third row of A a 0. This zeroing out of the columns will play a very
important role moving forward.
Using R, this can be done as

A <- matrix(c(1:9), 3, 3, byrow = FALSE)
# extract the rows
row1 <- A[1, ]
row3 <- A[3, ]
A[3, ] <- -3 * row1 + row3
A

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 0 -6 -12

Another way to do this row sum and replacement is

A <- matrix(c(1:9), 3, 3, byrow = FALSE)
A[3, ] <- -3 * A[1, ] + A[3, ]
A

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 0 -6 -12

3) Multiply the second row by 1
2 .

The second row of A is the row vector (2 5 8). Multiplying the second row by 1
2 gives

the row vector (1 5/2 4). Plugging this into the matrix gives the full matrix with
second row multiplied by 1

2 as

⎛⎜
⎝

1 4 7
1 5/2 4
3 6 9

⎞⎟
⎠
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In R, the second row of A can be multiplied by 1
2 as

A[2, ] <- 1/2 * A[2, ]
A

[,1] [,2] [,3]
[1,] 1 4.0 7
[2,] 1 2.5 4
[3,] 3 6.0 9

4.1.6 The Augmented matrix form of a system of equations

Consider the linear system of equations

𝑥1 + 4𝑥2 − 𝑥3 = 11
4𝑥1 + 5𝑥2 + 2𝑥3 = 9.

The augmented matrix representation of this system of linear equations is given by the matrix

(1 4 −1 11
4 5 2 9 ) ,

where the first column of the matrix represents the variable 𝑥1, the second column of the matrix
represents the variable 𝑥2, the third column of the matrix represents the variable 𝑥3, and the
fourth column of the matrix represents the constant terms. We can express the augmented
form in R using a matrix

augmented_matrix <- matrix(c(1, 4, 4, 5, -1, 2, 11, 9), 2, 4)
augmented_matrix

[,1] [,2] [,3] [,4]
[1,] 1 4 -1 11
[2,] 4 5 2 9

and to make clear the respective variables, we can add in column names as a matrix attribute
using the colnames() function

colnames(augmented_matrix) <- c("x1", "x2", "x3", "constants")
augmented_matrix
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x1 x2 x3 constants
[1,] 1 4 -1 11
[2,] 4 5 2 9

which adds labels to each of the columns.

Now, using elementary row operations on the matrix, we can attempt to find solutions to the
system of equations. First, we multiply the first row by -4 and add it to the second row of the
matrix and replace the second row with this sum

augmented_matrix[2, ] <- -4 * augmented_matrix[1, ] + augmented_matrix[2, ]
augmented_matrix

x1 x2 x3 constants
[1,] 1 4 -1 11
[2,] 0 -11 6 -35

Next, scale the second row to have a leading value of 1 by dividing by -11

augmented_matrix[2, ] <- augmented_matrix[2, ] / (-11)
augmented_matrix

x1 x2 x3 constants
[1,] 1 4 -1.0000000 11.000000
[2,] 0 1 -0.5454545 3.181818

We can then multiply the second row by -4 and add it to the first row and replace the first
row with this value.

augmented_matrix[1, ] <- augmented_matrix[1, ] - 4 * augmented_matrix[2, ]
augmented_matrix

x1 x2 x3 constants
[1,] 1 0 1.1818182 -1.727273
[2,] 0 1 -0.5454545 3.181818

Notice how the matrix has a “triangular” form (The lower part of the “triangle” is made of 0s
and the upper part has numbers).
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The triangular form tells us that There are infinitely many solutions to this system of equation.
The infinite solutions are subject to the requirements that

𝑥1 = −19
11 − 13

11𝑥3

and
𝑥2 = 35

11 + 6
11𝑥3.

To get this into a reasonable form, we will solve these equations as a function of 𝑥1. Solving
the first equation for 𝑥3 gives

𝑥3 = −19
13 − 11

13𝑥1.

Then, plugging this into 𝑥3 in the second equation gives

𝑥2 = 35
11 + 6

11 (−19
13 − 11

13𝑥1)

= 341
143 − 6

13𝑥1

which defines a linear relationship between 𝑥1 and 𝑥2. Notice that in these last two solutions,
𝑥1 is a “free variable” and 𝑥2 and 𝑥3 are “determined” by 𝑥1.

In the plot below, the two planes (red and blue) are the geometric plots of the linear equations
in the system of equations (the red plane is the top equation and the blue plane is the bottom
equation). The purple line is the equation for the solution given the free variable 𝑥3 and lies
at the intersection of the two planes, much like the point in the two lines in figure linking
reference here lies at the intersection of the two points.

# uses gg3D library
n <- 60
x1 <- x2 <- seq(-10, 10, length = n)
region <- expand.grid(x1 = x1, x2 = x2)
df <- data.frame(

x1 = region$x1,
x2 = region$x2,
x3 = - 11 + (region$x1 + 4 * region$x2)

)

df2 <- data.frame(
x1 = region$x1,
x2 = region$x2,
x3 = (9 - 4 * region$x1 - 5 * region$x2) / 2

)
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df_solution <- data.frame(
x1 = x1,
x2 = 341 / 143 - 6 / 13 * x1,
x3 = -19/13 - 11/13 * x1

)

# theta and phi set up the "perspective/viewing angle" of the 3D plot
theta <- 63
phi <- -12
ggplot(df, aes(x1, x2, z = x3)) +

axes_3D(theta = theta, phi = phi) +
stat_wireframe(alpha = 0.25, color = "red", theta = theta, phi = phi) +
stat_wireframe(data = df2, aes(x = x1, y = x2, z = x3), alpha = 0.25, color = "blue", theta = theta, phi = phi) +
stat_3D(data = df_solution, aes(x1, x2, z = x3), geom = "line", theta = theta, phi = phi, color = "purple") +
theme_void() +
theme(legend.position = "none") +
labs_3D(hjust=c(0,1,1), vjust=c(1, 1, -0.2), angle=c(0, 0, 90), theta = theta, phi = phi)

Warning: Removed 2 row(s) containing missing values (geom_path).
Removed 2 row(s) containing missing values (geom_path).

x−axis

y−axis

z−
ax

is
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4.1.7 Existence and Uniqueness

Definition 4.6. A system of linear equations is said to be consistent if at least one solution
exists. The linear system of equations is said to have a unique solution if only one solution
exists.

Example 4.19. Is the system of linear equations consistent? If the system is consistent, does
it have a unique solution?

16𝑥1 + 2𝑥2 + 3𝑥3 = 13
5𝑥1 + 11𝑥2 + 10𝑥3 = 8
9𝑥1 + 7𝑥2 + 6𝑥3 = 12
4𝑥1 + 14𝑥2 + 15𝑥3 = 1

Solution
fill in solution here

Example 4.20. Is the system of linear equations consistent? If the system is consistent, does
it have a unique solution?

𝑥1 + 2𝑥2 + 3𝑥3 = 5
𝑥1 + 3𝑥2 + 2𝑥3 = 2

3𝑥1 + 2𝑥2 + 𝑥3 = 7

Solution
fill in solution here

67



4.2 Reduce row echelon form

Reducing a matrix to row echelon form is a useful technique for working with matrices. The row
echelon form can be used to solve systems of equations, as well as determine other properties of
a matrix that are yet to be discussed, including rank, invertibility, column/row spaces, etc.

Definition 4.7. A matrix is said to be in echelon form if

1) all nonzero rows are above any rows of zeros (all rows consisting entirely of zeros are at
the bottom)

2) the leading entry/coefficient of a nonzero row (called the pivot) is always strictly to the
right of the leading entry/coefficient of the row above

Example 4.21. echelon matrix example in class

Definition 4.8. A matrix is in reduced row echelon form if it is in echelon form and

1) the leading entry/coefficient of each row is 1

2) The leading entry/coefficient of 1 is the only nonzero entry in its column.

Example 4.22. rref matrix example in class

Definition 4.9. Echelon matrices have the property of being upper diagonal. A matrix is
said to be upper diagonal if all entries of the matrix at or above the diagonal are nonzero.

• Example: **lower and non-lower diagonal matrices

Definition 4.10. Two matrices are row-equivalent if one matrix can be transformed to the
other through elementary row operations.
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Theorem 4.1. A nonzero matrix can be transformed into more than one echelon forms.
However, the reduced row echelon form of a nonzero matrix is unique.

Example 4.23. Using elementary row operations, calculate the reduced row echelon form of
the following matrices

1) fill in later

2) fill in later

3) fill in later

4.2.1 Pivot positions

The leading entry/coefficients of a row echelon form matrix are called pivots. The positions of
the pivot positions are the same for any row echelon form of a matrix. In reduced row echelon
form, these pivot positions take the value 1.

Definition 4.11. In a matrix that is in reduced echelon form, the pivot position is the first
nonzero element of each row. The column in which the pivot position occurs is called a pivot
column.

Example 4.24. pivot position and pivot columns

4.2.2 Finding the reduced row echelon form

Calculating the reduced row echelon form is known as Gaussian elimination, which is named
after Johann Carl Friedrich Gauss. This algorithm uses elementary row operations to cal-
culate the reduced row echelon form. The following steps perform the Gaussian elimination
algorithm.

1) Start with the left-most nonzero column, which is a pivot column
2) If the top row is zero, swap rows so that the top row is nonzero so that the top row has

a nonzero element in the pivot position.
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3) Use row multiplication and addition to zero out all positions in the pivot column below
the top row (pivot position).

4) Ignore this top row and repeat steps 1-3 until there are no more nonzero rows to apply
steps 1-3 on. At the end of this step, the matrix is in row echelon form.

5) Starting at the right-most pivot column, use elementary row operations to zero out all
positions above each pivot and to make each pivot position 1. At the end of this step,
the matrix is in reduced row echelon form.

Example 4.25. in class

# pracma library
# rref example in class

4.2.3 Using reduced row echelon forms to solve systems of linear equations

When a system of linear equations is expressed as an augmented matrix, the reduced row
echelon form can be used to find solutions to those systems of equations. Consider the systems
of equations

3𝑥1 + 8𝑥2 − 4𝑥3 = 6
2𝑥1 − 4𝑥2 − 1𝑥3 = 8
4𝑥1 + 5𝑥2 = 9

which can be written in the augmented matrix form as

⎛⎜
⎝

3 8 −4 6
2 −4 −1 8
4 5 0 9

⎞⎟
⎠

In R, this is the matrix

# define matrix

Calculating the reduced row echelon form, gives

# calculate rref of augmented matrix

which gives the solution …
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Example 4.26.

• calculate the RREF for the augmented matrix in the example above by hand

Example 4.27. Another example where we find a solution is

5𝑥1 + 4𝑥2 − 2𝑥3 =0
−3𝑥1 − 2𝑥2 − 4𝑥3 =1

Do same steps

Definition 4.12. In a system of linear equations that is underdetermined (fewer equations
than unknowns), the determined/basic variables are those variable that have a 1 in the
respective columns when in reduced row echelon form (i.e., variables in a pivot position). The
variables that are not in a pivot position are called free variable.

Example 4.28. in class

4.2.4 Existence and uniqueness from reduced row echelon form

The row echelon form is useful to determine if a system of linear equations is consistent (the
system of equations has a solution). To check if a solution to a linear system of equations exists,
convert the system of equations to an augmented matrix form. Then, reduce the augmented
matrix to row echelon form using elementary matrix operations. As long as there is not an
equation of the form

0 = constant
for some constant number not equal to 0, the system of linear equations is consistent. If the
augmented matrix can be written in reduced row echelon form with no free variables, the
solution to the linear system of equations is unique. These results give rise to the theorem

Theorem 4.2. A linear system of equations is consistent (has a solution) if the furthest right
column (the constant column) is not a pivot column. If the system of equations is consistent,
(i.e., the furthest right column is not a pivot column), the solution is unique if there are no
free variables and there are infinitely many solutions if there is at least one free variable.
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• Example: consistent system of equations

⎛⎜
⎝

−7 −9 7 8
−4 0 6 −6
−10 3 −8 5

⎞⎟
⎠

• Example: inconsistent system of equations

⎛⎜⎜⎜⎜
⎝

−7 0 −8 −5
−4 3 8 −2
−10 7 −6 4
−9 6 5 1

⎞⎟⎟⎟⎟
⎠

72



5 Matrix equations

library(tidyverse)
library(dasc2594)
library(gg3D)
library(MASS)

Here we introduce the concept of the linear equation Ax = b. This equation is the most
fundamental equation in all of statistics and data science. Given a matrix A and a vector
of constants b, the goal is to solve for the value (or values) of x that are a solution to this
equation. The equation Ax = b is a matrix representation of the system of linear equations

Ax = b

(a1 … a𝐾)⎛⎜
⎝

𝑥1
⋮

𝑥𝐾

⎞⎟
⎠

= b

𝑥1a1 +…+ 𝑥𝐾a𝐾 = b

(5.1)

as long as the matrix A has 𝑛 rows and 𝐾 columns and the vectors a𝑘 are 𝑛-dimensional.

• Example: in class

• Example: in class

5.1 Solutions of matrix equations

Because the matrix equation Ax = b is equivalent to a linear system of equations 𝑥1a1 +…+
𝑥𝐾a𝐾 = b, we can solve the matrix equation Ax = b by writing the equation in an augmented
matrix form

(a1 … a𝐾 b)
and then reducing the matrix to reduced row echelon form. This gives rise to the theorem

Theorem 5.1. The matrix equation Ax = b, the vector equation 𝑥1a1 +…+𝑥𝐾a𝐾 = b, and
the augmented matrix (a1 … a𝐾 b) all have the same solution set.
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5.2 Existence of solutions

A solution to the matrix equation Ax = b exists if and only if b is a linear combination
of the columns of A. In other words, Ax = b has a solution if and only if b is in the
span{a1,… ,a𝐾}.

• Example: in class Let A = … and b = …. Is the matrix equation Ax = b consistent?

Theorem 5.2. For the 𝑛 ×𝐾 matrix A, the following statements are equivalent:

a) For each b ∈ ℛ𝑛, the equation Ax = b has at least one solution

b) Each b ∈ ℛ𝑛 is a linear combination of the columns of A

c) The columns of A span ℛ𝑛

d) A has 𝑛 pivot columns. (A has a pivot in every row)

5.3 Matrix-vector multiplication

To calculate Ax, we need to define matrix multiplication. The equivalence between the linear
systems of equations 𝑥1a1 +…+ 𝑥𝐾a𝐾 = b and the matrix equation Ax gives a hint in how
to do this. First, recall the definition of A and x

A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝐾
𝑎21 𝑎22 … 𝑎2𝐾
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝐾

⎞⎟⎟⎟⎟
⎠

x =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝐾

⎞⎟⎟⎟⎟
⎠
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The matrix product Ax is the linear system of equations

Ax =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 … 𝑎1𝐾
𝑎21 𝑎22 … 𝑎2𝐾
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝐾

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞⎟⎟⎟⎟
⎠

= 𝑥1
⎛⎜⎜⎜⎜
⎝

𝑎11
𝑎21
⋮

𝑎𝑛1

⎞⎟⎟⎟⎟
⎠

+ 𝑥2
⎛⎜⎜⎜⎜
⎝

𝑎12
𝑎22
⋮

𝑎𝑛2

⎞⎟⎟⎟⎟
⎠

+⋯+ 𝑥𝐾
⎛⎜⎜⎜⎜
⎝

𝑎1𝐾
𝑎𝑛𝐾
⋮

𝑎𝑛𝐾

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎11𝑥1 + 𝑎12𝑥2 +…+ 𝑎1𝐾𝑥𝐾
𝑎21𝑥1 + 𝑎22𝑥2 +…+ 𝑎2𝐾𝑥𝐾

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +…+ 𝑎𝑛𝐾𝑥𝐾

⎞⎟⎟⎟⎟
⎠

Notice that the first row of the last matrix above has the sum first row of the matrix A
multiplied by the corresponding elements in x (i.e., first element 𝑎11 of the first row of A
times the first element 𝑥1 of x plus the second, third, fourth, etc.). Likewise, this pattern
holds for the second row, and all the other rows. This gives an algorithm for evaluating the
product Ax.

Definition 5.1. The product Ax of a 𝑛×𝐾 matrix A with a 𝐾-vector x is a 𝑛-vector where
the 𝑖th element of Ax is the sum of the 𝑖th row of A times the corresponding elements of the
vector x

• Example: in class

• Example: in class

• Example: in R using loops

• Example: in R using %*%

5.4 Properties of matrix-vector multiplication

If A is a 𝑛 ×𝐾 matrix, u and v are vectors in ℛ𝐾 and 𝑐 is a scalar, then

a) A(u + v) = Au + Av
b) A(𝑐u) = (𝑐A)u

• Proof in class
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5.5 Solutions of linear systems

5.5.1 Homogeneous linear systems of equations

Definition 5.2. The matrix equation
Ax = 0 (5.2)

is called a homogeneous system of equations. The vector 0 is a vector of length 𝑁 composed
of all zeros. The trivial solution of the homogeneous equation is when x = 0 and is not a
very useful solution. Typically one is interested in nontrivial solutions where x ≠ 0.

The homogeneous linear system of equations can be written in augmented matrix form

(a1 … a𝐾 0)

which implies that a non-trivial solution only exists if there is a free variable. Another way of
saying this is that at least one column A must not be a pivot column (Note: the last column
of the augmented matrix will not be a pivot column because it will be a column of zeros).
If every column of A were a pivot column, the reduced row echelon form of the augmented
matrix would be

⎛⎜
⎝

1 0 … 0 0
0 1 … 0 0
0 0 … 1 0

⎞⎟
⎠

which implies the only solution is the trivial solution 0.

• Example: in class

3𝑥1 − 2𝑥2 + 4𝑥3 = 0
−2𝑥1 + 4𝑥2 − 2𝑥3 = 0
5𝑥1 − 6𝑥2 + 6𝑥3 = 0

* Example: in class

Consider the equation

2𝑥1 + 4𝑥2 − 𝑥3 = 0.
we can write this as

𝑥1 = −2𝑥2 +
1
2𝑥3
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where 𝑥2 and 𝑥3 are free variables. Writing this as a solution x gives

x = ⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

−2𝑥2 + 1
2𝑥3

𝑥2
𝑥3

⎞⎟
⎠

= 𝑥2
⎛⎜
⎝

−2
1
0
⎞⎟
⎠

+ 𝑥3
⎛⎜
⎝

1
2
0
1
⎞⎟
⎠

which is a linear combination of the vectors u = ⎛⎜
⎝

−2
1
0
⎞⎟
⎠

and v = ⎛⎜
⎝

1
2
0
1
⎞⎟
⎠
. This implies that

we can write the solution x = 𝑐u + 𝑑v for scalars 𝑎 and 𝑏. Therefore, the solution set x is
contained in the span{u,v}. Because the vectors u and v are linearly independent (they don’t
point in the same direction), the set of all linear combinations of 𝑐u + 𝑑v defines a plane.

Definition 5.3. A solution set of the form x = 𝑐u + 𝑑v is called a parametric vector
solution.

5.6 Solutions to nonhomogeneous systems

Recall the simple linear equation
𝑦 = 𝑚𝑥 + 𝑏

where 𝑚 is the slope and 𝑏 is the y-intercept. Setting 𝑏 = 0 gives a simple homogenous linear
equation where the y-intercept goes through the origin (0, 0). When 𝑏 is nonzero, the line
keeps the same slope but is shifted upward/downward by 𝑏.

ggplot(data = data.frame(x = 0, y = 0), aes(x, y)) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
geom_abline(slope = 2, intercept = 0, color = "red") +
geom_abline(slope = 2, intercept = 2, color = "blue") +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_text(

data = data.frame(x = c(0, 0), y = c(0, 2), text = c("homogeneous\nsolution", "inhomogeneous\nsolution")),
aes(x = x + c(1.75, -1), y = y + 0.5, label = text), size = 5, inherit.aes = FALSE,
color = c("red", "blue")) +

geom_segment(
aes(x = 0, xend = 0, y = 0, yend = 2),
arrow = arrow(length = unit(0.1, "inches")),
size = 1.5, color = "orange") +

geom_text(
data = data.frame(x = 0, y = 2, text = "b"),
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aes(x = x + 0.5, y = y, label = text),
size = 8, inherit.aes = FALSE,
color = "orange")

homogeneous

solution

inhomogeneous

solution b

−4

−2

0

2

4

−4 −2 0 2 4
x

y

This shift in location (but not in slope) is called a translation

• Example: Show this shift for a system of linear equations where the solution set defines
a plane. From example above,

2𝑥1 + 4𝑥2 − 𝑥3 = 0.
has the parametric solution x = 𝑐u + 𝑑v with

u = ⎛⎜
⎝

−2
1
0
⎞⎟
⎠

v = ⎛⎜
⎝

1
2
0
1
⎞⎟
⎠

Now, if we change the system of linear equations so that we have the inhomogeneous equation
2𝑥1 + 4𝑥2 − 𝑥3 = 20.

we get the homogeneous solution set 𝑥1 = −2𝑥2+ 1
2𝑥3+10 which can be written in parametric

form as x = 𝑐u + 𝑑v + p with

u = ⎛⎜
⎝

−2
1
0
⎞⎟
⎠

v = ⎛⎜
⎝

1
2
0
1
⎞⎟
⎠

p = ⎛⎜
⎝

10
0
0
⎞⎟
⎠
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For plotting, we will solve these equations for 𝑥3, letting 𝑥1 and 𝑥2 be free variables (this is
just for the requirements of the plotting function). Thus, the homogeneous equation has the
solution 𝑥3 = 2𝑥1+4𝑥2 and the inhomogenous equation has the solution 𝑥3 = 2𝑥1+4𝑥2−20.

# uses gg3D library
n <- 60
x1 <- x2 <- seq(-10, 10, length = n)
region <- expand.grid(x1 = x1, x2 = x2)
df <- data.frame(

x1 = region$x1,
x2 = region$x2,
x3 = c(

2 * region$x1 + 4 * region$x2,
2 * region$x1 + 4 * region$x2 - 20),

equation = rep(c("inhomogeneous", "homogeneous"), each = n^2))

# theta and phi set up the "perspective/viewing angle" of the 3D plot
theta <- 45
phi <- 20
ggplot(df, aes(x = x1, y = x2, z = x3, color = equation)) +

axes_3D(theta = theta, phi = phi) +
stat_wireframe(

alpha = 0.75,
theta = theta, phi = phi) +

scale_color_manual(values = c("inhomogeneous" = "blue", "homogeneous" = "red")) +
theme_void() +
labs_3D(hjust=c(0,1,1), vjust=c(1, 1, -0.2),

angle=c(0, 0, 90), theta = theta, phi = phi)

Warning: Removed 4 row(s) containing missing values (geom_path).
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x−axis

y−axis

z−
ax

is

equation

inhomogeneous

homogeneous

• Example: in class Let’s revisit the example from before

3𝑥1 − 2𝑥2 + 4𝑥3 = 0
−2𝑥1 + 4𝑥2 − 2𝑥3 = 0
5𝑥1 − 6𝑥2 + 6𝑥3 = 0

but change this so that b = ⎛⎜
⎝

2
−6
8
⎞⎟
⎠

• Write this as a parametric solution with a mean shift

A <- matrix(c(3, -2, 5, -2, 4, -6, 4, -2, 6, 2, -6, 8), 3, 4)
fractions(rref(A))

[,1] [,2] [,3] [,4]
[1,] 1 0 3/2 -1/2
[2,] 0 1 1/4 -7/4
[3,] 0 0 0 0
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𝑥1 = −3
2𝑥3 −

1
2

𝑥2 = −1
4𝑥3 −

7
4

which was the same solution set as the homoegenous solution ⎛⎜
⎝

−3
2

−1
4
1

⎞⎟
⎠

plus the additional vector

⎛⎜
⎝

−1
2

−7
4
0

⎞⎟
⎠
. Thus, the inhomogenous solution is now x = 𝑐u + p where

u = ⎛⎜
⎝

−3
2

−1
4
1

⎞⎟
⎠

p = ⎛⎜
⎝

−1
2

−7
4
0

⎞⎟
⎠

5.7 Finding solutions

The following algorithm describes how to solve a linear system of equations.

1) Put the system of equations in an augmented matrix form

2) Reduce the augmented matrix to reduced row echelon form

3) Express each determined variable as a function of the free variables.

4) Write the solution in a general form where the determined variables are a function of the
independent variables

5) Decompose the solution x into a linear combination of free variables as parameters
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6 Linear independence

Recall the homogeneous equation Ax = 0 can be written as a linear combination of coefficients
𝑥1,… , 𝑥𝐾 and vectors a1,… ,a𝐾 where

𝐾
∑
𝑘=1

𝑥𝑘a𝑘 = 0

Definition 6.1. The set of vectors a1,… ,a𝐾 are called linearly independent if the only
solution to the vector equation ∑𝐾

𝑘=1 𝑥𝑘a𝑘 = 0 is the trivial solution. The set of vectors
a1,… ,a𝐾 are called linearly dependent if there are coefficients 𝑥1,… , 𝑥𝐾 that are not all
zero.

Example 6.1. In class

What does it mean for a set of vectors to be linearly dependent? This means that there is
at least one vector a𝑘 that can be written as a sum of the other vectors with coefficients 𝑥𝑘:

a𝑘 = ∑
𝑗≠𝑘

𝑥𝑗a𝑗

Note: linear dependence does not imply that all vectors a𝑘 can be written as a linear
combination of other vectors, just that there is at least one such vector in the set.

Example 6.2. Example: in class – determine if the vectors are linearly independent
and solve the dependence relation

Theorem 6.1. The matrix A has linearly independent columns if and only if the matrix
equation Ax = 0 has only the trivial solution.
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Example 6.3. Example: in class A set of a single vector

Example 6.4. Example: in class A set of two vectors

• linearly independent if:

• linearly dependent if one vector is a scalar multiple of the other:

Theorem 6.2. If an 𝑛×𝐾 matrix A has 𝐾 > 𝑛, then the columns of A are linearly dependent.
In other words, if a set of vectors a1,… ,a𝐾 contains more vectors than entries within vectors,
the set of vectors is linearly dependent.

Proof
If 𝐾 > 𝑛, there are more variables (𝐾) than equations (𝑛). Therefore, there is at least one
free variable and this implies that the homogeneous equation Ax = 0 has a non-trivial
solution Equation 5.2

Theorem 6.3. If a set of vectors a1,… ,a𝐾 contains the 0 vector, then the the set of vectors
is linearly dependent.

Proof
in class

Example 6.5. In class: Determine whether the following sets of vectors are linearly dependent
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7 Linear Transformations

• 3 Blue 1 Brown – Linear transformations

• 3 Blue 1 Brown – 3D transformations

library(tidyverse)
library(dasc2594)
library(gifski)

It is often useful to think of Ax as a linear transformation defined by the matrix A applied
to the vector x.

A linear transformation is mathematically defined as a function/mapping 𝑇 (⋅) (𝑇 for transfor-
mation) from a domain in ℛ𝑛 (function input) to a codomain in ℛ𝑚 (function output). In
shorthand, this is written as 𝑇 ∶ ℛ𝑛 → ℛ𝑚 which is read a “𝑇 maps inputs from the domain
ℛ𝑛 to the codomain ℛ𝑚.” For each x ∈ ℛ𝑛 (in the domain), 𝑇 (x) ∈ ℛ𝑚 is known as the
image of x. The set of all 𝑇 (x) for all x ∈ ℛ𝑛 is known as the range of 𝑇 (x). Note that it is
possible that the range of 𝑇 (x) is not required to be the entire space ℛ𝑚 (i.e., the range of
the transformation 𝑇 might be a subset of ℛ𝑚)

Draw figure
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In the case of matrix transformations (linear transformations), the function 𝑇 (x) = Ax where
A is a 𝑚× 𝑛 matrix and x ∈ ℛ𝑛 is a 𝑛-vector.
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• Question: What kind of object is Ax?

– scalar
– vector
– matrix
– array

• Question What are the dimensions of Ax?

Using the matrix transformation notation, the domain of the transformation 𝑇 is ℛ𝑛, the
codomain of 𝒯 ℛ𝑚. The range of the transformation 𝑇 is the set of all linear combinations
of the columns of A (the span{a1,… ,a𝑛}) because the transformation 𝑇 (x) = Ax is a linear
combination ∑𝑛

𝑖=1 𝑥𝑖a𝑖 of the columns {a𝑖}𝑛𝑖=1 of A with coefficients 𝑥1,… , 𝑥𝑛

Example 7.1.

A = ⎛⎜
⎝

2 4
−3 1
−1 6

⎞⎟
⎠

u = (1
3) b = ⎛⎜

⎝

−2
−11
−15

⎞⎟
⎠

c = ⎛⎜
⎝

2
−2
−1

⎞⎟
⎠

A <- matrix(c(2, -3, -1, 4, 1, 6), 3, 2)
u <- c(1, 3)
b <- 3 * A[, 1] - 2 * A[, 2]
c <- c(2, -2, -1)

a) Find the image of u using the matrix transformation 𝑇 (e.g., calculate 𝑇 (u)).

# a
A %*% u

[,1]
[1,] 14
[2,] 0
[3,] 17

The image of u under 𝑇 is 𝑇 (u) = Au = ⎛⎜
⎝

14
0
17

⎞⎟
⎠
.

b) Find a coefficient vector x ∈ ℛ2 such that 𝑇 (x) = b.
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#b
rref(cbind(A, b))

b
[1,] 1 0 3
[2,] 0 1 -2
[3,] 0 0 0

A coefficient vector x such that 𝑇 (x) = b is the solution to the matrix equation Ax = b
which can be found from the reduced row echelon form of the augmented matrix above giving

x = ( 3
−2)

c) Is there more than one x whose image under 𝑇 is b? In other words, is the solution
Ax = b unique?

Use the reduced row echelon form of the matrix equation Ax = b above which gives a unique
solution as every (non augmented) column is a pivot. Thus, there is only one solution.

d) Determine if c is in the range of 𝑇 . In other words, does the solution Ax = c exist?

# d
rref(cbind(A, c)) # no because this is an inconsistent system of equations

c
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

The solution to the matrix equation Ax = c which can be found from the reduced row
echelon form of the augmented matrix above results in no solution because the last column
(the augmented column) is a pivot column. Thus, the system of equations is inconsistent and
c cannot be written as a linear combination of the columns of A which means that c is not in
the range of 𝑇 .

7.1 Linear Transformations

Definition 7.1. A transformation 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is linear if
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1) 𝑇 (u + v) = 𝑇 (u) + 𝑇 (v) for all u and v in the domain of 𝑇
2) 𝑇 (𝑐u) = 𝑐𝑇 (u) for all scalars 𝑐 and all vectors u in the domain of 𝑇

Note: Because a linear transformation is equivalent to a matrix transformation, the definition
above is equivalent to the following matrix-vector multiplication properties

If A is a 𝑚× 𝑛 matrix, u and v are vectors in ℛ𝑚 and 𝑐 is a scalar, then

1) A(u + v) = Au + Av
2) A(𝑐u) = (𝑐A)u

As a consequence of the previous definition, the following properties hold for scalars 𝑐 and 𝑑
and vectors u and v ∈ ℛ𝑚

3) 𝑇 (0) = 0
4) 𝑇 (𝑐u + 𝑑v) = 𝑐𝑇 (u) + 𝑑𝑇 (v)

• Show why in class

These properties give rise to the following statement for scalars 𝑐1,… , 𝑐𝑚 and vectors
u1,… ,u𝑚 ∈ ℛ𝑛

5) 𝑇 (𝑐1u1 +…+ 𝑐𝑚u𝑚) = 𝑐1𝑇 (u1) + …+ 𝑐𝑚𝑇 (u𝑚)

The statements above for linear transformations are equivalent to the matrix statements where
A is a 𝑚× 𝑛 matrix, u and v are vectors in ℛ𝑚 and 𝑐 is a scalar:

3) A0 = 0
4) A(𝑐u + 𝑑v) = 𝑐Au + 𝑑Av

And for a 𝑚× 𝑛 matrix A, scalars 𝑐1,… , 𝑐𝑚, and vectors u1,… ,u𝑚 ∈ ℛ𝑛

5) A(𝑐1u1 +…+ 𝑐𝑚u𝑚) = 𝑐1Au1 +…+ 𝑐𝑚Au𝑚

7.2 Types of matrix transformations

The basic types of matrix transformations include

1) contractions/expansions
2) rotations
3) reflections
4) shears
5) projections
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For the following examples, we will consider the unit vectors u = (1
0) and v = (0

1) and apply

different linear transformations using the matrix A.

To build the matrix transformations, we use the dasc2594 package and build matrix trans-
formations based on code from https://www.bryanshalloway.com/2020/02/20/visualizing-
matrix-transformations-with-gganimate/.

7.2.1 Contractions/Expansions

7.2.1.1 Horizonal Expansion

The matrix below gives a horizontal expansion when 𝑥 > 1

A = (𝑥 0
0 1)

• In the example below, we set 𝑥 = 2 and generate the transformation.

transformation_matrix <- tribble(
~ x, ~ y,
2, 0,
0, 1) %>%
as.matrix()

p <- plot_transformation(transformation_matrix)
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Unit Square Horizontal expansion

7.2.1.2 Horizonal Contraction

The matrix below gives a horizontal contraction when 𝑥 < 1 * Horizontal contraction when
𝑥 < 1

A = (𝑥 0
0 1)

• In the example below, we set 𝑥 = 0.5
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Unit Square Horizontal contraction

7.2.1.3 Vertical Expansion

The matrix below gives a vertical expansion when 𝑥 > 1

A = (1 0
0 𝑥)

* In the example below, we set 𝑥 = 2
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Unit Square Vertical expansion

7.2.1.4 Vertical Contraction

The matrix below gives a vertical contraction when 𝑥 < 1

A = (1 0
0 𝑥)

• In the example below, we set 𝑥 = 0.5
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Unit Square Vertical contraction

7.2.2 Rotations

7.2.2.1 Rotation by 90 degrees

Rotations in 2D of an angle 𝜃 ∈ [0, 2𝜋] take the form of

A = (cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃) )

For example, a rotation of 90 degrees counter-clockwise (𝜃 = 𝜋
2 ) is given by the transformation

matrix
A = (cos(

𝜋
2 ) − sin(𝜋2 )

sin(𝜋2 ) cos(𝜋2 )
) = (0 −1

1 0 )
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Unit Square Rotation by 90 degrees (pi / 2 radians)

Another example is for a rotation of 45 degrees clockwise (𝜃 = −𝜋
4 ) is given by the transfor-

mation matrix

= (cos(
𝜋
4 ) − sin(𝜋4 )

sin(𝜋4 ) cos(𝜋4 )
) = (

√
2
2 −

√
2
2√

2
2

√
2
2

)
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Unit Square Rotation by −45 degrees (−pi / 4 radians)

7.2.3 Reflections

7.2.3.1 Reflection across the x-axis

The matrix below gives a reflection about the x-axis

A = (1 0
0 −1)
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Unit Square Reflection across x−axis

7.2.3.2 Reflection across the y-axis

The matrix below gives a reflection about the y-axis

A = (−1 0
0 1)
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Unit Square Reflection across y−axis

7.2.3.3 Reflection across the line y = x

A = (0 1
1 0)

• In the example below, we set 𝑥 = 0.5
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Unit Square Reflection across line y = x

7.2.3.4 Reflection across the line y = - x

A = ( 0 −1
−1 0 )
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Unit Square Reflection across line y = −x

7.2.3.5 Reflection across the origin (0, 0)

A = (−1 0
0 −1)
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Unit Square Reflection across the origin

7.2.4 Shears

A shear transformation is like stretching play-dough if it was possible to stretch all parts of
the dough uniformly (rather than some sections getting stretched more than others).

7.2.4.1 Horizontal Shear

A = (1 𝑥
0 1)

For the example below, we plot a horizontal shear with 𝑥 = 2.
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Unit Square Horizontal Shear

7.2.4.2 Vertical Shear

A = (1 0
𝑥 1)

For the example below, we plot a horizontal shear with 𝑥 = 2.
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Unit Square Vertical Shear

7.2.5 Projections

A projection is a mapping 𝑇 ∶ ℛ𝑛 → ℛ𝑛 from one space (R𝑛) to itself (R𝑛) such that 𝑇 2 = 𝑇

7.2.5.1 Project onto the x-axis

A = (1 0
0 0)

For the example below, we plot a projection onto the x-axis
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Unit Square Projection onto the x−axis

7.2.5.2 Project onto the y-axis

A = (0 0
0 1)

For the example below, we plot a projection onto the y-axis
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Unit Square Projection onto the y−axis

7.2.6 Identity

The identity transformation is the transformation that leaves the vector input unchanged. The
identity matrix is typically written as I

I = (1 0
0 1)
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Unit Square Identity transformation

7.3 Properties of matrix transformations

7.3.1 One-to-one transformations

Definition 7.2. A transformation 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is called one-to-one if every vector b in
the image ℛ𝑚, the equation 𝑇 (x) = b has at most one solution in ℛ𝑛.
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The following statements are equivalent was of saying 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is one-to-one:

a) For every b ∈ ℛ𝑚 (for every vector in the image), the equation 𝑇 (x) = b has either zero
or one solution

b) Every different input into the function 𝑇 (⋅) has a different output

c) If 𝑇 (u) = 𝑇 (v) then u = v

The following statements are equivalent was of saying 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is not one-to-one:

a) There exists as least one b ∈ ℛ𝑚 such that the equation 𝑇 (x) = b has more than one
solution

b) There are at least two different inputs into the function 𝑇 (⋅) that have the same output

c) There exist vectors u ≠ v ∈ ℛ𝑛 such that 𝑇 (u) = 𝑇 (v)

Theorem 7.1. Let Ax be the matrix representation of the linear transformation 𝑇 (x) for the
𝑚× 𝑛 matrix A. Then the following statements are equivalent:

1) 𝑇 is one-to-one.

2) For every b ∈ ℛ𝑚, the equation 𝑇 (x) = b has at most one solution.

3) For every b ∈ ℛ𝑚, the equation Ax = b has a unique solution or is inconsistent.

4) The equation Ax = 0 has only a trivial solution.

5) The columns of A are linearly independent.

6) A has a pivot in every column.

7) The range of A has dimension 𝑛

106



• Example: is the following matrix one-to-one?

A = ⎛⎜
⎝

1 0
0 1
1 1

⎞⎟
⎠

• Example: is the following matrix one-to-one?

A = ⎛⎜
⎝

1 0 0
0 1 0
1 1 0

⎞⎟
⎠

Note: Matrices that are wider than they are tall are not one-to-one transformations. (This
does not mean that all tall matrices are one-to-one)

7.3.2 Onto transformations

Definition 7.3. A transformation 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is called onto if, for every vector b ∈ ℛ𝑚,
the equation 𝑇 (x) = b has at least one solution x ∈ ℛ𝑛
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The following are equivalent ways of saying that 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is onto:

1) The range of 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is equal to the codomain of 𝑇 ∶ ℛ𝑛 → ℛ𝑚

2) Every vector in the codomain is the output of some input vector

The following are equivalent ways of saying that 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is not onto:

1) The range of 𝑇 ∶ ℛ𝑛 → ℛ𝑚 is smaller than the codomain of 𝑇 ∶ ℛ𝑛 → ℛ𝑚.

2) There exists a vector b ∈ ℛ𝑚 such that the equation 𝑇 (x) does not have a solution.

3) There is a vector in the codomain that is not the output of any input vector.

Theorem 7.2. Let Ax be the matrix representation of the linear transformation 𝑇 (x) for the
𝑚× 𝑛 matrix A. Then the following statements are equivalent:

1) 𝑇 is onto

2) 𝑇 (x) = b has at least one solution for every b ∈ ℛ𝑚.

3) The equation Ax = b is consistent for every b ∈ ℛ𝑚.

4) The columns of A span ℛ𝑚

5) A has a pivot in every row

6) The range of 𝑇 ∶ ℛ𝑛 → ℛ𝑚 has dimension 𝑚

• Example:

• Example: is the following matrix onto?
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A = (1 1 0
0 1 1)

• Example: is the following matrix one-to-one?

A = ⎛⎜
⎝

1 0
0 1
1 0

⎞⎟
⎠

Note: Matrices that are taller than they are wide are not onto transformations. (This does
not mean that all wide matrices are onto)
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8 Block Matrices

Another way to represent matrices is using a block (or partitioned) form. A block-
representation of a matrix arises when the 𝑛× 𝑝 matrix A is represented using smaller blocks
as follows:

A =
⎛⎜⎜⎜⎜
⎝

A11 A12 ⋯ A1𝐾
A21 A22 ⋯ A2𝐾
⋮ ⋮ ⋱ ⋮

A𝐽1 A𝐽2 ⋯ A𝐽𝐾

⎞⎟⎟⎟⎟
⎠

where A𝑖𝑗 is a 𝑛𝑗 × 𝑝𝑘 matrix where ∑𝐽
𝑗=1 𝑛𝑗 = 𝑛 and ∑𝐾

𝑘=1 𝑝𝑘 = 𝑝.
For example, the matrix

A =
⎛⎜⎜⎜⎜
⎝

5 7 1
5 −22 2

−14 5 99
42 −3 0

⎞⎟⎟⎟⎟
⎠

,

can be written in block matrix form with

A = (A11 A12
A21 A22

)

=
⎛⎜⎜⎜⎜
⎝

[5 7
5 −22] [12]

[−14 5
42 −3] [990 ]

⎞⎟⎟⎟⎟
⎠

,

where A11 = [5 7
5 −22] is a 2 × 2 matrix, A12 = [12] is a 2 × 1 matrix, etc.

A_11 <- matrix(c(5, 5, 7, -22), 2, 2)
A_12 <- c(1, 2)
A_21 <- matrix(c(-14, 42, 5, -3), 2, 2)
A_22 <- c(99, 0)
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## bind columns then rows
rbind(

cbind(A_11, A_12),
cbind(A_21, A_22)

)

A_12
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0

## bind rows then columns
cbind(

rbind(A_11, A_21),
c(A_12, A_22) ## rbind on vectors is different than c()

)

[,1] [,2] [,3]
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0

## bind rows then columns
cbind(

rbind(A_11, A_21),
## convert the vectors to matrices for rbind
rbind(as.matrix(A_12), as.matrix(A_22))

)

[,1] [,2] [,3]
[1,] 5 7 1
[2,] 5 -22 2
[3,] -14 5 99
[4,] 42 -3 0
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8.1 Block Matrix Addition

If A and B are both 𝑚× 𝑛 block matrices with blocks in 𝑟 rows and 𝑐 columns where

A =
⎛⎜⎜⎜⎜
⎝

A11 A12 ⋯ A1𝑐
A21 A22 ⋯ A2𝑐
⋮ ⋮ ⋱ ⋮

A𝑟1 A𝑟2 ⋯ A𝑟𝑐

⎞⎟⎟⎟⎟
⎠

B =
⎛⎜⎜⎜⎜
⎝

B11 B12 ⋯ B1𝑐
B21 B22 ⋯ B2𝑐
⋮ ⋮ ⋱ ⋮

B𝑟1 B𝑟2 ⋯ B𝑟𝑐

⎞⎟⎟⎟⎟
⎠

and each block A𝑖𝑗 and B𝑖𝑗 have the same dimension, then

A + B =
⎛⎜⎜⎜⎜
⎝

A11 + B11 A12 + B12 ⋯ A1𝑐 + B1𝑐
A21 + B21 A22 + B22 ⋯ A2𝑐 + B2𝑐

⋮ ⋮ ⋱ ⋮
A𝑟1 + B𝑟1 A𝑟2 + B𝑟2 ⋯ A𝑟𝑐 + B𝑟𝑐

⎞⎟⎟⎟⎟
⎠

(8.1)

which is a matrix where each block is the sum of the other blocks. Notice that if each block
was a scalar rather than a block matrix, this would be the usual definition of matrix addition
(compare Equation 8.1) above to Equation 2.1). The one requirement is that each of the
blocks A𝑖𝑗 and B𝑖𝑗 have the same dimension. When this is true, we say that A and B are
conformable for block matrix addition.

8.2 Block Matrix Multiplication

If A and B are both 𝑚×𝑛 block matrices with blocks in 𝑟 rows and 𝑐 columns (same as above)
where

A =
⎛⎜⎜⎜⎜
⎝

A11 A12 ⋯ A1𝑐
A21 A22 ⋯ A2𝑐
⋮ ⋮ ⋱ ⋮

A𝑟1 A𝑟2 ⋯ A𝑟𝑐

⎞⎟⎟⎟⎟
⎠

B =
⎛⎜⎜⎜⎜
⎝

B11 B12 ⋯ B1𝑐
B21 B22 ⋯ B2𝑐
⋮ ⋮ ⋱ ⋮

B𝑟1 B𝑟2 ⋯ B𝑟𝑐

⎞⎟⎟⎟⎟
⎠

and each row of blocks A𝑖𝑗 has the same number of columns as the block B𝑖𝑗 has rows, then
the block matrices A and B are said to be conformable for block matrix multiplication.
A consequence of this is that 𝑟 = 𝑐. When this is the case, the matrix products is

AB =
⎛⎜⎜⎜⎜⎜
⎝

∑𝑐
𝑗=1 A1𝑗B𝑗1 ∑𝑐

𝑗=1 A1𝑗B𝑗2 ⋯ ∑𝑐
𝑗=1 A1𝑗B𝑗𝑐

∑𝑐
𝑗=1 A2𝑗B𝑗1 ∑𝑐

𝑗=1 A2𝑗B𝑗2 ⋯ ∑𝑐
𝑗=1 A2𝑗B𝑗𝑐

⋮ ⋮ ⋱ ⋮
∑𝑐

𝑗=1 A𝑟𝑗B𝑗1 ∑𝑐
𝑗=1 A𝑟𝑗B𝑗2 ⋯ ∑𝑐

𝑗=1 A𝑟𝑗B𝑗𝑐

⎞⎟⎟⎟⎟⎟
⎠

(8.2)
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which can be said in words as “each block-element (the 𝑖𝑗th element (AB)𝑖𝑗) of the block-
matrix product AB is the sum of the 𝑖th block-row of A and the 𝑗th block column of B.
Notice that if each block was a scalar rather than a block matrix, this would be the usual
definition of matrix multiplication (compare Equation 8.3 above to Equation 2.2).

Example 8.1. in class

Solution
A solution to the example problem

8.3 The column-row matrix product

Theorem 8.1. The matrix product AB of an 𝑚 × 𝑛 matrix A = (a1 a2 ⋯ a𝑛) with

columns {a𝑖}𝑛𝑖=1 and an 𝑛 × 𝑝 matrix B =
⎛⎜⎜⎜⎜
⎝

b′
1

b′
2
⋮

b′
𝑛

⎞⎟⎟⎟⎟
⎠

with rows {b′
𝑖}𝑛𝑖=1 can be written as the

column-row expansion below:

AB = (a1 a2 ⋯ a𝑛)
⎛⎜⎜⎜⎜
⎝

b′
1

b′
2
⋮

b′
𝑛

⎞⎟⎟⎟⎟
⎠

= a1b′
1 + a2b′

2 +⋯+ a𝑛b′
𝑛

(8.3)

Recall: The notation b′
𝑖 has a transpose because a vector is defined in the vertical orientation

(column vector). Therefore, to formally define a row vector, we take a vertical vector of the
values in the row and take its transpose to turn the column vector into a row vector.

Example 8.2. in class
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8.4 Special Block Matrices

There are many different forms of block matrices. Two that deserve special mention here
include block diagonal matrices and block triangular matrices.

Definition 8.1. The matrix A is said to be block diagonal if

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

A1 0 0 ⋯ 0
0 A2 0 ⋯ 0
0 0 A3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ A𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

Definition 8.2. The matrix A is said to be block (upper) triangular if

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

A11 A12 A13 ⋯ A1𝑛
0 A22 A23 ⋯ A2𝑛
0 0 A33 ⋯ A3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ A𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

A is block (lower) triangular if

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

A11 0 0 ⋯ 0
A21 A22 0 ⋯ 0
A31 A32 A33 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

A𝑚1 A𝑚2 A𝑚3 ⋯ A𝑚𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

Example 8.3. Assume that A, which has the form

A = (A11 A12
0 A22

) ,

is an invertible matrix where A11 a 𝑝 × 𝑝 invertible matrix, A12 a 𝑝 × 𝑞 matrix, and A22 is a
𝑞 × 𝑞 invertible matrix. Solve for A−1
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Solution

The inverse to A is a matrix B = (B11 B12
B21 B22

) with blocks B11, B12, B21, and B22 of

appropriate size to be conformable with the blocks A11, A12, andA22 that make up the
matrix A.
For B to be the inverse of A, AB = BA = I = (I 0

0 I) where 0 is a matrix of zeros of

the appropriate size. Writing this out in blocks gives

BA = (B11 B12
B21 B22

)(A11 A12
0 A22

)

= (B11A11 B11A12 + B12A22
B21A11 B21A12 + B22A22

)

which gives that B11 = A−1
11 because B−1

11 A11 = I and A11 is invertible. The equation
also give B21A11 = 0 and because A11 is an invertible matrix, the homogeneous equation
A11b = 0 has only the trivial solution for each column b of the matrix B21 which implies
that B21 = 0. Using these facts, we can rewrite the above equation as

BA = (I A−1
11 A12 + B12A22

0 B22A22
)

Because the lower right entry B22A22 must equal I, we have that B22 = A−1
22 . Then, the

equation becomes

BA = (I A−1
11 A12 + B12A22

0 I )

The final component is the upper right block. Because we are finding the inverse, we
know that 0 = A−1

11 A12 + B12A22. Subtracting A−1
11 A12 from both sides of the equation

gives

B12A22 = −A−1
11 A12

B12A22A−1
22 = −A−1

11 A12A−1
22

B12I = −A−1
11 A12A−1

22
B12 = −A−1

11 A12A−1
22

Thus, A−1 = (A−1
11 −A−1

11 A12A−1
22

0 A−1
22

)
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9 Matrix Inverses

• 3 Blue 1 Brown – Inverse Matrices, column space, and null space

library(dasc2594)
library(tidyverse)

For scalars, the multiplicative identity is

𝑎1𝑎 = 𝑎𝑎−1 = 𝑎−1𝑎 = 1

where 𝑎−1 is the inverse of 𝑎.

Definition 9.1 (Matrix Inverse). The 𝑛×𝑛 square matrix A is said to be invertible if there
exists a 𝑛 × 𝑛 matrix C( which we call A−1 once we verify the inverse exists) such that

CA = AC = I
A−1A = AA−1 = I

where I is the 𝑛×𝑛 identity matrix (the matrix with 1s on the diagonal and zeros everywhere
else).

In R, an identity matrix is easy to construct. An 𝑛 × 𝑛 identity matrix can be constructed
using the diag() function

n <- 4
I <- diag(n)
I

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
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Example 9.1.

A = (1 −1
2 −3) B = (3 −1

2 −1)

# check if B is the inverse of A
A %*% B

[,1] [,2]
[1,] 1 0
[2,] 0 1

# check if B is the inverse of A
B %*% A

[,1] [,2]
[1,] 1 0
[2,] 0 1

Because AB = BA = I, we have A is an invertible matrix with inverse B = A−1.

Theorem 9.1 (Matrix Inverse for 2 by 2 matrix). Let A = (𝑎 𝑏
𝑐 𝑑). If 𝑎𝑑 − 𝑏𝑐 ≠ 0 then A

is invertible and
A−1 = 1

𝑎𝑑 − 𝑏𝑐 ( 𝑑 −𝑏
−𝑐 𝑎 )

If 𝑎𝑑 − 𝑏𝑐 = 0, then the matrix is not invertible.

• Question: why is the matrix not invertible when 𝑎𝑑 − 𝑏𝑐 = 0?
– Have you heard of “singular” or “singularity” before?
– Black holes are called singularities. Why is this?
– Square matrices that are not invertible are call “singular”
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Definition 9.2. For the 2×2 matrix A = (𝑎 𝑏
𝑐 𝑑), the term 𝑎𝑑−𝑏𝑐 is called the determinant

of the matrix A and is written as det(A). Sometimes the determinant is written as |A|

A consequence of the above theorem is that a 2× 2 matrix is invertible only if its determinant
is nonzero.

Example 9.2. Determine if the following 2 × 2 matrix is invertible

A = ( 4 −4
−1 2 )

Theorem 9.2. If the 𝑛×𝑛 matrix A is invertible, then for each b ∈ ℛ𝑛, the matrix equation

Ax = b

has the unique solution x = A−1b.

Proof
There are two things to show …

1) show there is a solution

2) show the solution is unique

Example 9.3.

Let A = ⎛⎜
⎝

4 −4 −2
5 2 −5
−4 6 1

⎞⎟
⎠

and b = ⎛⎜
⎝

3
1
2
⎞⎟
⎠

Find the solution to Ax = b

Theorem 9.3 (Invertible Matrix Theorem Again). Adding onto the Invertible Matrix Theorem
Theorem 9.5 we have

1) If A is an invertible matrix, then A−1 is invertible and (A−1)−1 = A
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2) If A and B are 𝑛 × 𝑛 invertible matrices, then AB is also an invertible matrix whose
inverse is

(AB)−1 = B−1A−1

which is the inverse of the matrices in reverse order.

3) If A is an invertible matrix, then the transpose A′ is also invertible and the inverse of
A′ is the transpose of A−1. Equivalently,

(A′)−1 = (A−1)′

Proof
Here we prove the three statements from the theorem above. All three statements rely
on the definition of an invertible matrix in Definition 9.1.

1) If A−1 is invertible, then, there exists a matrix C such that CA−1 = A−1C = I.
Let C = A. Then, we have AA−1 = A−1A = I which shows that (A−1)−1 = A

2) First, consider multiplying AB on the left by B−1A−1 where (AB)(B−1A−1) =
A(BB−1)A−1 = AIA−1 = AA−1 = I. Then multiply AB on the right by B−1A−1

where (B−1A−1)(AB) = B(AA−1)B−1 = BIB−1 = BB−1 = I.

3) Use the fact that (AB)′ = B′A′. Then, (A−1)′A′ = (AA−1)′ = I′ = I. Similarly
A′(A−1)′ = (A−1A)′ = I′ = I. Thus A′ is invertible with inverse (A−1)′

• Note: A consequence of Theorem 12.4 (2) is that the product of 𝑘 invertible 𝑛 × 𝑛
matrices A1A2 ⋯A𝑘 has inverse A−1

𝑘 A−1
𝑘−1 ⋯A−1

1

9.1 Elementary matrices

• Elementary matrices are matrices that perform basic row operations (i.e., we can write
the reduced row echelon algorithm as a produce of elementary matrices).

Recall the elementary row operations:

1) swaps: swapping two rows.
2) sums: replacing a row by the sum itself and a multiple of another row.
3) scalar multiplication: replacing a row by a scalar multiple times itself.

Example 9.4. Consider the 3 × 3 matrix
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A <- matrix(c(4, 5, 9, -2, -4, 1, 4, 6, -2), 3, 3)

A = ⎛⎜
⎝

4 −2 4
5 −4 6
9 1 −2

⎞⎟
⎠

1) What is the elementary matrix (let’s call it E1 that swaps the first and second rows of
A?

E_1 <- matrix(c(0, 1, 0, 1, 0, 0, 0, 0, 1), 3, 3)

E1 = ⎛⎜
⎝

0 1 0
1 0 0
0 0 1

⎞⎟
⎠

A

[,1] [,2] [,3]
[1,] 4 -2 4
[2,] 5 -4 6
[3,] 9 1 -2

## left multiple A by E_1
E_1 %*% A

[,1] [,2] [,3]
[1,] 5 -4 6
[2,] 4 -2 4
[3,] 9 1 -2

Thus, the matrix E1 = ⎛⎜
⎝

0 1 0
1 0 0
0 0 1

⎞⎟
⎠

is the matrix that swaps the first and second row.

2) What is the elementary matrix (let’s call it E2 that adds two times the first of A to the
third row of A?

E_2 <- matrix(c(1, 0, 2, 0, 1, 0, 0, 0, 1), 3, 3)
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E2 = ⎛⎜
⎝

1 0 0
0 1 0
2 0 1

⎞⎟
⎠

A

[,1] [,2] [,3]
[1,] 4 -2 4
[2,] 5 -4 6
[3,] 9 1 -2

## left multiple A by E_2
E_2 %*% A

[,1] [,2] [,3]
[1,] 4 -2 4
[2,] 5 -4 6
[3,] 17 -3 6

Thus, the matrix E2 = ⎛⎜
⎝

1 0 0
0 1 0
2 0 1

⎞⎟
⎠

is the matrix that adds two times the first of A to the

third row of A

3) What is the elementary matrix (let’s call it E3 that mutliples the second row of A by 3?

E_3 <- matrix(c(1, 0, 0, 0, 3, 0, 0, 0, 1), 3, 3)

E3 = ⎛⎜
⎝

1 0 0
0 3 0
0 0 1

⎞⎟
⎠

A

[,1] [,2] [,3]
[1,] 4 -2 4
[2,] 5 -4 6
[3,] 9 1 -2
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## left multiple A by E_3
E_3 %*% A

[,1] [,2] [,3]
[1,] 4 -2 4
[2,] 15 -12 18
[3,] 9 1 -2

Thus, the matrix E3 = ⎛⎜
⎝

1 0 0
0 3 0
0 0 1

⎞⎟
⎠

is the matrix that multiples the second row of A by 3.

• Question: Do you see any patterns with how the example elementary matrices look?

E1 = ⎛⎜
⎝

0 1 0
1 0 0
0 0 1

⎞⎟
⎠

E2 = ⎛⎜
⎝

1 0 0
0 1 0
2 0 1

⎞⎟
⎠

E3 = ⎛⎜
⎝

1 0 0
0 3 0
0 0 1

⎞⎟
⎠

• The elementary matrices look like the identity matrix I with an elementary row operation
applied to I. In fact, this leads us to this general fact:

Fact: If an elementary row matrix is applied to the 𝑚 × 𝑛 matrix A, the result of this
elementary row operation applied to A can be written as EA where E is the 𝑚×𝑚 identity
matrix I with the respective elementary row operation applied to I.

Fact: Each elementary matrix E is invertible

Example 9.5. In class

The next theorem is quite important as the result gives an algorithm for calculating the inverse
of a 𝑛 × 𝑛 matrix A which also makes it possible to solve matrix equations Ax = b

Theorem 9.4. If an 𝑛×𝑛 matrix A is invertible, then A is row-equivalent to I (A ∼ I; row-
equivalent means A can be reduced to I using elementary row operations). The row-equivalency
implies that there is a series of elementary row operations (e.g., elementary matrices E1,… ,E𝑘)
that converts A to I. In addition, the application of these row matrices to I transforms I to
the matrix inverse A−1.

• Proof: in class
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9.2 Finding the inverse of A

The previous theorem states that for a 𝑛×𝑛 invertible matrix A, the elementary row operations
that covert A to I also convert I to A−1. This suggests an algorithm for finding the inverse
A−1 of A:

Create the augmented matrix (A I) and row reduce the augmented matrix. If the row-
reduced augmented matrix is of the form (I A−1) then A−1 is the inverse of A. If the leading
matrix in the augmented matrix is not the identity matrix I, then A is not row equivalent to
I and is therefore not invertible.

Example 9.6. Let A = ⎛⎜
⎝

−3 −3 −4
−4 2 −4
4 −4 4

⎞⎟
⎠
. Does A have an inverse, and if so, what is it?

Using R

9.3 The Invertible Matrix Theorem

Theorem 9.5 (The Invertible Matrix Theorem). Let A be an 𝑛×𝑛 matrix. Then the following
statements are equivalent (i.e., they are all either simultaneously true or false).

1) A is an invertible matrix.

2) A is row equivalent to the 𝑛 × 𝑛 identity matrix I (A ∼ I).

3) A has 𝑛 pivot columns.

4) The homogeneous matrix equation Ax = 0 has only the trivial solution x = 0.

5) The columns of A are linearly independent.

6) The linear transformation 𝑇 ∶ ℛ𝑛 → ℛ𝑛 given by the matrix transformation x → Ax is
one-to-one.

7) The inhomogeneous matrix equation Ax = b has a unique solution for all b ∈ ℛ𝑛.

8) The columns of A span ℛ𝑛.

9) The linear transformation x → Ax maps ℛ𝑛 onto ℛ𝑛.

10) There is an 𝑛 × 𝑛 matrix C such that CA = I.

11) There is an 𝑛 × 𝑛 matrix D such that AD = I.
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12) A′ is an invertible matrix.

Proof
In class

A result of the invertible matrix theorem is that if A and B are 𝑛 × 𝑛 matrices with AB = I
then A = B−1 and B = A−1.

9.4 Invertible Linear Transformations

Definition 9.3. A linear transformation 𝑇 ∶ ℛ𝑛 → ℛ𝑛 is said to be invertible if there exists
a transformation 𝑆 ∶ ℛ𝑛 → ℛ𝑛 such that

𝑆(𝑇 (x)) = x for all x ∈ ℛ𝑛𝑇 (𝑆(x)) = x for all x ∈ ℛ𝑛

• Draw figure in class

Theorem 9.6. Let 𝑇 ∶ ℛ𝑛 → ℛ𝑛 be a linear transformation and let A be the matrix represent-
ing the transformation 𝑇 . Then the transformation 𝑇 is invertible if and only if the matrix A
is invertible. Therefore, the matrix that represents 𝑆 ∶ ℛ𝑛 → ℛ𝑛, the inverse transformation
of 𝑇 , is unique and is represented by the matrix A−1.
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10 Matrix Factorizations

library(tidyverse)
library(dasc2594)
library(mvnfast)
library(MASS)

In scalar mathematics, a factorization is an expression that writes a scalar 𝑎 as a product of
two or more scalars. For example, the scalar 2 has a square-root factorization of 2 =

√
2 ∗

√
2

and 15 has a prime factorization of 15 = 3 ∗ 5. A matrix factorization is a similar concept
where a matrix A can be represented by a product or two or more matrices (e.g., A = BC).
In data science, matrix factorizations are fundamental to working with data.

10.1 The LU factorization

First, we define lower and upper triangular matrices.

Definition 10.1. The matrix A is said to be lower triangular if

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎11 0 0 ⋯ 0
𝑎21 𝑎22 0 ⋯ 0
𝑎31 𝑎32 𝑎33 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 ⋯ 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

Similarly, the matrix A is said to be upper triangular if

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠
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The LU factorization of a matrix A reduces the matrix A into two components. The first
component L is a lower-triangular matrix and the second component U is an upper triangular
matrix.

Using the LU factorization, the matrix factorization A = LU can be used in the matrix
equation Ax = LUx = b by first solving the sub-equation Ly = b and then solving the
second sub-equation Ux = y for x. Thus, the matrix factorization applied to the matrix
equation gives the pair of equations

Ly = b
Ux = y

(10.1)

At first glance, this seems like we are trading the challenge of solving one system of equations
Ax Equation 5.1 for the two equations in Equation 10.1. However, the computational benefits
arise due to the fact that L and U are triangular matrices and solving matrix equations with
triangular matrices is much faster.

Example 10.1. Let A =
⎛⎜⎜⎜⎜
⎝

1 0 2 −2
−2 −2 −4 1
−1 −4 −8 5
−2 −6 −4 4

⎞⎟⎟⎟⎟
⎠

which has the LU decomposition

A =
⎛⎜⎜⎜⎜
⎝

1 0 2 −2
−2 −2 −4 1
−1 −4 −8 5
−2 −6 −4 4

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 0 0 0
−2 −1 0 0
−1 −2 −3 0
−2 −3 0 −3

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

1 0 2 −2
0 2 0 3
0 0 2 −3
0 0 0 −3

⎞⎟⎟⎟⎟
⎠

and consider the system of equations defined by the matrix equation Ax = b where b =

⎛⎜⎜⎜⎜
⎝

−5
−7
−2
−14

⎞⎟⎟⎟⎟
⎠
.

1) solve Ly = b using an augmented matrix and RREF.

2) solve Ux = y using an augmented matrix and RREF.

3) compare to the solution Ax = b using an augmented matrix and RREF.

Solution
For the example, we will show how to solve a system of equations using the LU decom-
position for the equation defined above.
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1) Solve Ly = b using augmented matrix

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
−2 −1 0 0 −7
−1 −2 −3 0 −2
−2 −3 0 −3 −14

⎞⎟⎟⎟⎟
⎠

𝑟2←− 1
2𝑟2−𝑟1∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1/2 0 0 17/2
−1 −2 −3 0 −2
−2 −3 0 −3 −14

⎞⎟⎟⎟⎟
⎠

𝑟3←−𝑟3−𝑟1∼
⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1/2 0 0 17/2
0 2 3 0 7
−2 −3 0 −3 −14

⎞⎟⎟⎟⎟
⎠

𝑟4←− 1
2𝑟4−𝑟1∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1/2 0 0 17/2
0 2 3 0 7
0 3/2 0 3/2 12

⎞⎟⎟⎟⎟
⎠

𝑟2←2𝑟2∼
⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1 0 0 17
0 2 3 0 7
0 3/2 0 3/2 12

⎞⎟⎟⎟⎟
⎠

𝑟3← 1
2𝑟3−𝑟2∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1 0 0 17
0 0 3/2 0 −27/2
0 3/2 0 3/2 12

⎞⎟⎟⎟⎟
⎠

𝑟4← 2
3𝑟4−𝑟2∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1 0 0 17
0 0 3/2 0 −27/2
0 0 0 1 −9

⎞⎟⎟⎟⎟
⎠

𝑟3← 2
3𝑟3∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 −5
0 1 0 0 17
0 0 1 0 −9
0 0 0 1 −9

⎞⎟⎟⎟⎟
⎠

2) solve Ux = y using an augmented matrix and RREF.

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 2 0 3 17
0 0 2 −3 −9
0 0 0 −3 −9

⎞⎟⎟⎟⎟
⎠

𝑟2← 1
2𝑟2∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 2 −3 −9
0 0 0 −3 −9

⎞⎟⎟⎟⎟
⎠

𝑟3← 1
2𝑟3∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 −3 −9

⎞⎟⎟⎟⎟
⎠

𝑟4←− 1
3𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟1←𝑟1−2𝑟3∼
⎛⎜⎜⎜⎜
⎝

1 0 0 1 4
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟1←𝑟1−2𝑟4∼
⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟2←𝑟2− 3
2𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 0 4
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟3←𝑟3+ 3
2𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 0 4
0 0 1 0 0
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

3) compare to the solution Ax = b using an augmented matrix and RREF.
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⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
−2 −2 −4 1 −7
−1 −4 −8 5 −2
−2 −6 −4 4 −14

⎞⎟⎟⎟⎟
⎠

𝑟2←𝑟2+2𝑟1∼
⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 −2 0 −3 −17
−1 −4 −8 5 −2
−2 −6 −4 4 −14

⎞⎟⎟⎟⎟
⎠

𝑟3←𝑟3+𝑟1∼
⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 −2 0 −3 −17
0 −4 −6 3 −7
−2 −6 −4 4 −14

⎞⎟⎟⎟⎟
⎠

𝑟4←𝑟4+2𝑟1∼
⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 −2 0 −3 −17
0 −4 −6 3 −7
0 −6 0 0 −24

⎞⎟⎟⎟⎟
⎠

𝑟2←− 1
2𝑟2∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 −4 −6 3 −7
0 −6 0 0 −24

⎞⎟⎟⎟⎟
⎠

𝑟3←𝑟3+4𝑟2∼
⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 −6 9 27
0 −6 0 0 −24

⎞⎟⎟⎟⎟
⎠

𝑟4←𝑟4+6𝑟2∼
⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 −6 9 27
0 0 0 9 27

⎞⎟⎟⎟⎟
⎠

𝑟3←− 1
6𝑟3∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 9 27

⎞⎟⎟⎟⎟
⎠

𝑟4← 1
9𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 2 −2 −5
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟1←𝑟1−2𝑟3∼
⎛⎜⎜⎜⎜
⎝

1 0 0 1 4
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟1←𝑟1−𝑟4∼
⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 3/2 17/2
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟2←𝑟2− 3
2𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 0 4
0 0 1 −3/2 −9/2
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

𝑟3←𝑟3+ 3
2𝑟4∼

⎛⎜⎜⎜⎜
⎝

1 0 0 0 1
0 1 0 0 4
0 0 1 0 0
0 0 0 1 3

⎞⎟⎟⎟⎟
⎠

While it might not be completely obvious, once one has calculated the LU decomposition,
it can often be much faster to solve systems of equations with the LU decomposition.

in lab: Solve some large systems of equations by brute force which shows how the LU decom-
position is faster.

10.1.1 Geometric interpretation of the LU factorization

• Draw image in class – composition of transformations 𝑇𝐴(⋅) = 𝑇𝐿(𝑇𝑈(⋅))
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10.2 Obtaining the LU factorization

Notice that the upper-triangular matrix U is in echelon form. Congratulations! you know how
to construct a matrix U by reducing the matrix A to an echelon form U using elementary
matrices E1,…E𝑘. Now, we only need to find the lower triangular matrix L.

Combining the LU factorization and the fact that we can find an upper triangular matrix U
using elementary row matrices, we have

A = LU
E𝑘 ⋯E1A = U. (10.2)

We also know that each of the elementary row matrices E𝑗 are invertible (you can always re-
swap rows, subtract instead of add rows, etc.) which says that each inverse E−1

𝑗 exists. Thus,
the product E𝑘 ⋯E1 must have an inverse which is

(E𝑘 ⋯E1)−1 = E−1
1 ⋯E−1

𝑘 .

Plugging this inverse into Equation 10.2 gives (left multiplying by (E𝑘 ⋯E1)−1 on both sides)

(E𝑘 ⋯E1)−1(E𝑘 ⋯E1)A = (E𝑘 ⋯E1)−1U
A = (E𝑘 ⋯E1)−1U

= LU

where L = (E𝑘 ⋯E1)−1

Algorithm for finding the LU decomposition

Given the matrix A

1) Find elementary matrices E1,… ,E𝑘 such that E𝑘 ⋯E1A is in row echelon form (if this
is possible, otherwise an LU factorization does not exist). Call this matrix U, the upper
triangular component of the LU factorization.

2) The, the lower triangular L = (E𝑘 ⋯E1)−1.

Notice that the algorithm does not say to find a specific matrix U. In general, any row echelon
form matrix U will work.

10.3 The Cholesky factor

A Cholesky decomposition is special type of LU decomposition. A Cholesky decomposition is
an LU decomposition on a symmetric, positive-definite square matrix.
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Definition 10.2. If a matrix A meets the following two conditions, the matrix A is said to
be symmetric, positive-definite.

1) A matrix A is said to by symmetric if A = A′

b) A 𝑛 × 𝑛 matrix is said to be positive definite if for all x ∈ ℛ𝑛, the quadratic form
x′Ax ≥ 0

Note: the condition of positive definiteness is actually impossible to check. Can you show this
is true for all vectors? Luckily, a 𝑛× 𝑛 symmetric matrix is positive definite if and only if the
matrix A is invertible (which we know about by the invertible matrix theorem Theorem 9.5).

Definition 10.3. Let A be a symmetric, positive definite matrix (by this, A is a 𝑛×𝑛 square
matrix). Then

A = LL′

is the Cholesky decomposition of A if L is a lower-triangular matrix. Also, the lower triangular
Cholesky matrix L is unique.

What makes the Cholesky factor special?

• The decomposition A = LU has the property that U = L′ so that the computer only
has to store one of the matrix components (reduce memory demands). As about half of
the elements of L are 0, matrix multiplication is much less computationally demanding
as about half of the flops are not required to be evaluated (x * 0 = 0).

• The Cholesky factor is unique. There is only one Cholesky factor for each symmetric
positive definite matrix.

• The Cholesky has properties related to multivariate normal distributions.

Let y ∼ N(0, Σ), and Σ = LL′. Then, if z ∼ N(0, I), then Lz ∼ N(0, Σ). We say the y and
Lz are equal in distribution.

# simulate N 2-dimensional random normal vectors
N <- 5000
mu <- rep(0, 2)
Sigma <- matrix(c(2, 1.5, 1.5, 2), 2, 2)
y <- rmvn(N, mu, Sigma)

# calculate the Cholesky factor
L <- t(chol(Sigma)) # R calculates the upper (right) Cholesky factor by default
z <- rmvn(N, mu, diag(2))

130



Lz <- t(L %*% t(z)) # pay attention to the dimensions of L and z here...

data.frame(
observation = 1:N,
x1 = c(y[, 1], z[, 1], Lz[, 1]),
x2 = c(y[, 2], z[, 2], Lz[, 2]),
variable = factor(rep(c("y", "z", "Lz"), each = N), levels = c("y", "z", "Lz"))

) %>%
ggplot(aes(x = x1, y = x2, color = variable)) +
geom_point(alpha = 0.1) +
geom_density2d() +
facet_wrap(~ variable)

y z Lz

−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0
−6

−3

0

3

x1

x2

variable

y

z

Lz
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11 Subspaces of ℛ𝑛

• 3 Blue 1 Brown – Linear combinations, span, and basis vectors

• 3 Blue 1 Brown – Inverse Matrices, column space, and null space

library(dasc2594)

First, let’s recall the definition of a subset. A set 𝐴 is a subset of a set 𝐵 if all elements of
𝐴 are also members of 𝐵. For example, the integers 𝒵 are a subset of the real numbers R
(𝒵 ⊂ ℛ) and the real numbers are a subset of the complex numbers 𝒞 (ℛ ⊂ 𝒞).
Subspaces are a generalization of the idea of subsets that are useful for understanding vector
spaces.

Definition 11.1. A subspace ℋ of ℛ𝑛 is a set that has the properties

1) The zero vector 0 ∈ ℋ [(additive identity)]style=”float:right”

2) For each u,v ∈ ℋ, the sum u + v is in ℋ [(closed under vector
addition)]style=”float:right”

3) For each u ∈ ℋ and scalar 𝑐, the scalar multiple 𝑐u is in ℋ [(closed under scalar
multiplication)]style=”float:right”

Example 11.1. Let u and v be vectors in ℛ𝑛. Then the vector space defined by span{u,v}
is a subspace of ℛ𝑛

Solution
To show that span{u,v} is a subspace of ℛ𝑛, we must satisfy the three conditions of
Definition 11.1.

1) 0 ∈ span{u,v} because 0 = 0u + 0v is a linear combination of u and v with
coefficients 0 and 0.
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2) Let x ∈ span{u,v} and y ∈ span{u,v}. Then, by the definition of the span
(Definition 3.1) there exists constants 𝑎, 𝑏, 𝑐, 𝑑 such that x = 𝑎u+𝑏v and y = 𝑐u+𝑑v.
Thus, x + y = 𝑎u + 𝑏v + 𝑐u + 𝑑v = (𝑎 + 𝑐)u + (𝑏 + 𝑑)v which, by definition, is in
the span{u,v}. Thus, span{u,v} is closed under addition.

3) Let x ∈ span{u,v} 𝑐 be a constant. Because x ∈ span{u,v}, the definition of the
span in Definition 3.1 implies there exists constants 𝑎 and 𝑏 such that x = 𝑎u+𝑏v.
Thus, 𝑐x = 𝑐𝑎u + 𝑐𝑏v which is a linear combination of u and v and is therefore
𝑐x ∈ span{u,v}.

Because all three requirements are met, we have shown that span{u,v} is a subspace of
ℛ𝑛.

Example 11.2. Recall that a solution to the matrix equation Ax = 0 that has one free
variable is a line through the origin and the solution to the matrix equation Ax = b that has
one free variable is a line parallel to the prior line that does not go through the origin.

A) Is a line through the origin a subspace?

B) Is a line not through the origin a subspace?

Solution
Part A: First, we will consider whether the line through the origin is a subspace. To
show this, we need to verify the three properties of a subspace in Definition 11.1.

1) 0 is on the line through the origin because Ax = 0 has the trivial solution x = 0.

2) If u and v are on the line through the origin, then because the line through the
origin is defined as the solution set of the equation Ax = 0 we know that

Au = 0 and Av = 0.

Then, the vector u + v is in the subspace defined by the line through the origin
because

A(u + v) = Au + Av = 0 + 0 = 0,
which is a solution to the matrix equation and therefore u+v is a point on the line
through the origin.

3) If u is a point on the line through the origin and 𝑐 is a scalar, then because the line
through the origin is defined as the solution set of the equation Ax = 0 we know
that

Au = 0.
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Then, the vector 𝑐u is in the subspace defined by the line through the origin because

A(𝑐u) = 𝑐Au = 𝑐0 = 0,

which is a solution to the matrix equation and therefore 𝑐u is a point on the line
through the origin.

Part B: Next, we consider whether the line not through the origin is a subspace. To
show this, we need to verify the three properties of a subspace in Definition 11.1. Recall
that a line not through the origin is a solution set of the matrix equation Ax = b where
the solution set has a single free variable and ≠0. To check if this line defines a subspace,
we check the first condition of Definition 11.1.

1) 0 is not on the line through the origin because Ax = b does not have the trivial
solution x = 0 because A0 = 0 ≠ b. Because 0 is not a point on the line not
through the origin, the line not through the origin does not define a subspace.

• Note: For any vectors u1,… ,u𝑘 ∈ ℛ𝑛, the span{u1,… ,u𝑘} is a subspace of ℛ𝑛.

11.1 Special subspaces: column space and null space

Definition 11.2. The column space, denoted col(A), of a𝑚×𝑛matrix A which has columns
a1,… ,a𝑛 ∈ ℛ𝑚 is the set of vectors that are linear combinations of the columns of A which
is equivalent to the span{a1,… ,a𝑛}.

Example 11.3.

Given the matrix A =
⎛⎜⎜⎜⎜
⎝

1 −8 −9
−3 3 −5
1 0 6
−2 −1 −1

⎞⎟⎟⎟⎟
⎠

with columns a1, a2, and a3, what is the column

space of A?

Solution
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Given the matrix A =
⎛⎜⎜⎜⎜
⎝

1 −8 −9
−3 3 −5
1 0 6
−2 −1 −1

⎞⎟⎟⎟⎟
⎠

with columns a1, a2, and a3, the column space

of A is the set of vectors b such that

b = 𝑥1a1 + 𝑥2a2 + 𝑥3a3.

Thus, the column space of A is the span of the vectors that makes up the columns of A.

Definition 11.3. The null space, denoted null(A), of a matrix A is the set of all solutions
to the homogeneous matrix equation Ax = 0.

While the idea of a null space might at first glance seem unclear, the null space is the set of
all vectors which the matrix transformation defined by A maps to 0. In other words, the null
space of A is the set of vectors {x ∶ Ax = 0}.

Example 11.4.

Given the matrix A = ⎛⎜
⎝

−3 −3 −4 −5 −2
−4 2 −4 5 3
4 −4 4 −3 5

⎞⎟
⎠

with columns a1, a2, a3, and a4, find vectors

that span the null space of A.

Solution

Given the matrix A = ⎛⎜
⎝

−3 −3 −4 −5 −2
−4 2 −4 5 3
4 −4 4 −3 5

⎞⎟
⎠

with columns a1, a2, a3, and a4, the

null space of A is the solution set of the homogeneous system of equations Ax = 0. Using
an augmented matrix and transforming into reduced row echelon form gives the RREF
form

⎛⎜
⎝

−3 −3 −4 −5 −2 0
−4 2 −4 5 3 0
4 −4 4 −3 5 0

⎞⎟
⎠

∼ ⎛⎜
⎝

1 0 0 −15 −25 0
0 1 0 −1 −4 0
0 0 1 53/4 89/4 0

⎞⎟
⎠
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which tells us that the solution to the system of equations is

𝑥1 − 15𝑥4 − 25𝑥5 = 0
𝑥2 − 𝑥4 − 4𝑥5 = 0

𝑥3 +
53
4 𝑥4 +

89
4 𝑥5 = 0
𝑥4 = 𝑥4
𝑥5 = 𝑥5

Writing this solution as a vector times 𝑥4 and a vector times 𝑥5 gives the vectors
⎛⎜⎜⎜⎜⎜⎜
⎝

15
1

−53
4
1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

and
⎛⎜⎜⎜⎜⎜⎜
⎝

25
4

−89
4
0
1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

In R, this is shown by starting with the matrix A

A <- matrix(c(-3, -4, 4, -3, 2, -4, -4, -4, 4, -5, 5, -3, -2, 3, 5), 3, 5)
A

[,1] [,2] [,3] [,4] [,5]
[1,] -3 -3 -4 -5 -2
[2,] -4 2 -4 5 3
[3,] 4 -4 4 -3 5

Looking at the reduced row echelon form of A gives

rref(A)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 -15.00 -25.00
[2,] 0 1 0 -1.00 -4.00
[3,] 0 0 1 13.25 22.25

where the columns of interest are the non-pivot columns. For this matrix A, the fourth
and fifth columns of A are the non-pivot columns. The fourth column or the RREF form
corresponds to the variable 𝑥4 and the fifth column corresponds to the variable 𝑥5. Thus,
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you can extract the vectors that form the null space from these fourth and fifth columns
of the RREF form of A like so

# the nullspace vector corresponding to x4 = 1 and x5 = 0
c(-rref(A)[, 4], 1, 0)

[1] 15.00 1.00 -13.25 1.00 0.00

# the nullspace vector corresponding to x4 = 0 and x5 = 1
c(-rref(A)[, 5], 0, 1)

[1] 25.00 4.00 -22.25 0.00 1.00

We check that these vectors are in null(A) by using matrix multiplication and verifying
that these are zero (at least up to numeric overflow/underflow)

A %*% c(-rref(A)[, 4], 1, 0)

[,1]
[1,] -7.105427e-15
[2,] -7.105427e-15
[3,] 7.105427e-15

A %*% c(-rref(A)[, 5], 0, 1)

[,1]
[1,] -1.421085e-14
[2,] -1.421085e-14
[3,] 1.421085e-14

Theorem 11.1. The null space of a n 𝑚×𝑚 matrix A is a subspace of ℛ𝑛.

Proof
Do in class Show that the three requirements of the definition of a subspace in Defini-
tion 11.1 are met.

1)
2)
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3)

• Example: give A and x and determine if x is in the null space of A using R

11.2 The basis of a subspace

Definition 11.4. A basis for a subspace ℋ of ℛ𝑛 is

1) a linearly independent set in ℋ that
2) spans ℋ.

Equivalently, a basis is a set of linearly independent vectors u1,… ,u𝑘 such that
span{u1,… ,u𝑘} = ℋ.

The requirement that the vectors of a basis are linearly independent while spanning a subspace
ℋ means that a basis is a minimal spanning set for the subspace ℋ

Example 11.5. Is a basis for a vector space unique?

Solution
A basis for a vector is not unique. Just like you can represent the number 16 as 1.6 ∗ 101
(base 10) or 24 (base 2), the basis for a vector space is also not unique.

Definition 11.5. The standard basis for ℛ𝑛 is the set of vectors {e1, e2,… , e𝑛} of length 𝑛
where the vector e𝑗 is a vector that is 0 in every value except for a 1 in the 𝑗th position. For
example,

e1 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
0
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, e2 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, e3 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
1
⋮
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, … , e𝑛 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
0
⋮
1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Notice that the matrix defined as having columns e1, e2,… , e𝑛 is the identity matrix I.
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Example 11.6. What is the standard basis for ℛ3?

Solution
The standard basis for ℛ3 are the x-, y-, and z-axes. These are written as vectors where

the x-axis is e1 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠
, the y-axis is e2 = ⎛⎜

⎝

0
1
0
⎞⎟
⎠
, and the z-axis is e3 = ⎛⎜

⎝

0
0
1
⎞⎟
⎠
,

Example 11.7. Do the following set of vectors form a basis for ℛ3?

x = ⎛⎜
⎝

2
1
2
⎞⎟
⎠
, y = ⎛⎜

⎝

−1
1
1
⎞⎟
⎠
, and z = ⎛⎜

⎝

1
0
2
⎞⎟
⎠

Solution

For the set of vectors x = ⎛⎜
⎝

2
1
2
⎞⎟
⎠
, y = ⎛⎜

⎝

−1
1
1
⎞⎟
⎠
, and z = ⎛⎜

⎝

1
0
2
⎞⎟
⎠

to form a basis for ℛ3, we

need to satisfy the two conditions in Definition 11.4. Both conditions of Definition 11.4
can be checked by combining the set of vectors x, y, and z into a matrix and using
RREF to determine the span{x,y, z} and determine whether the set of vectors {x,y, z}
is linearly independent. The matrix of the vectors is

⎛⎜
⎝

2 −1 1
1 1 0
2 1 2

⎞⎟
⎠

which is row-equivalent to

⎛⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

Because the reduced row echelon form of the matrix has 3 pivot columns, the
span{x,y, z} = ℛ3 which satisfies the first condition for being a basis. Because there is a
pivot in every column, we know the set of vectors is linearly independent which satisfies
the second condition for being a basis. Therefore, the set of vectors {x,y, z} forms a
basis for ℛ3

Using R, we can show this result first by creating the vectors x, y, and z and then joining
these into a matrix A using cbind()
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x <- c(2, 1, 2)
y <- c(-1, 1, 1)
z <- c(1, 0, 2)

A <- cbind(x, y, z)

Next, we convert A to reduced row echelon form to get the row equivalent matrix

rref(A)

x y z
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Because this reduced row echelon form has a pivot in each column we know the columns
of the matrix A are linearly independent. Because there are 3 pivot columns in total, we
know the span of the columns of A is ℛ3. Therefore, the vectors x,y, z forms a basis for
ℛ3.

Example 11.8. Do the following set of vectors form a basis for ℛ3?

w = ⎛⎜
⎝

2
1
2
⎞⎟
⎠
, x = ⎛⎜

⎝

−1
1
1
⎞⎟
⎠
, y = ⎛⎜

⎝

1
0
2
⎞⎟
⎠
, and z = ⎛⎜

⎝

4
2
−2

⎞⎟
⎠

Solution

For the set of vectors w = ⎛⎜
⎝

2
1
2
⎞⎟
⎠
, x = ⎛⎜

⎝

−1
1
1
⎞⎟
⎠
, y = ⎛⎜

⎝

1
0
2
⎞⎟
⎠
, and z = ⎛⎜

⎝

4
2
−2

⎞⎟
⎠

to form a

basis for ℛ3, we need to satisfy the two conditions in Definition 11.4. Both conditions of
Definition 11.4 be checked by combining the set of vectors w, x, y, and z into a matrix
and using RREF to determine the span{w,x,y, z} and determine whether the set of
vectors {w,x,y, z} is linearly independent. The matrix of the vectors is

⎛⎜
⎝

2 −1 1 4
1 1 0 2
2 1 2 −2

⎞⎟
⎠
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which is row-equivalent to

⎛⎜
⎝

1 0 0 16/5
0 1 0 −6/5
0 0 1 −18/5

⎞⎟
⎠

Because the reduced row echelon form of the matrix has 3 pivot columns, the
span{x,y, z} = ℛ3 which satisfies the first condition for being a basis. However, there is
not a pivot in every column which tells us that the set of vectors is linearly dependent
which does not satisfy the second condition for being a basis. Therefore, the set of vectors
{w,x,y, z} do not form a basis for ℛ3

Using R, we can show this result first by creating the vectors w, x,y, andzand then
joining these into a matrixAusingcbind()‘

w <- c(2, 1, 2)
x <- c(-1, 1, 1)
y <- c(1, 0, 2)
z <- c(4, 2, -2)

A <- cbind(w, x, y, z)

Next, we convert A to reduced row echelon form to get the row equivalent matrix

rref(A)

w x y z
[1,] 1 0 0 3.2
[2,] 0 1 0 -1.2
[3,] 0 0 1 -3.6

Because this reduced row echelon form does not have a pivot in each column, we know
the columns of the matrix A are linearly dependent. Because there are 3 pivot columns in
total, we know the span of the columns of A is ℛ3. Because the set of vectors {w,x,y, z}
are linearly dependent, they do not form a basis for ℛ3.

Example 11.9. Do the following set of vectors form a basis for ℛ3?

x = ⎛⎜
⎝

4
3
2
⎞⎟
⎠
, y = ⎛⎜

⎝

3
−3
4
⎞⎟
⎠
, and z = ⎛⎜

⎝

5
9
0
⎞⎟
⎠
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Solution

For the set of vectors x = ⎛⎜
⎝

4
3
2
⎞⎟
⎠
, y = ⎛⎜

⎝

3
−3
4
⎞⎟
⎠
, and z = ⎛⎜

⎝

5
9
0
⎞⎟
⎠

to form a basis for ℛ3,

we need to satisfy the two conditions in Definition 11.4. Both conditions of Definition
Definition 11.4 can be checked by combining the set of vectors x, y, and z into a matrix
and using RREF to determine the span{x,y, z} and determine whether the set of vectors
{x,y, z} is linearly independent. The matrix of the vectors is

⎛⎜
⎝

4 3 5
3 −3 9
2 4 0

⎞⎟
⎠

which is row-equivalent to

⎛⎜
⎝

1 0 2
0 1 −1
0 0 0

⎞⎟
⎠

Because the reduced row echelon form of the matrix has 2 pivot columns, the
span{x,y, z} = ℛ2 which does not satisfy the first condition for being a basis for ℛ3. In
addition, there is not a pivot in every column which tells us that the set of vectors is lin-
early dependent which does not satisfy the second condition for being a basis. Therefore,
the set of vectors {x,y, z} do not form a basis for ℛ3

Using R, we can show this result first by creating the vectors x,y, andzand then
joining these into a matrixAusingcbind()‘

x <- c(4, 3, 2)
y <- c(3, -3, 4)
z <- c(5, 9, 0)

A <- cbind(x, y, z)

Next, we convert A to reduced row echelon form to get the row equivalent matrix

rref(A)

x y z
[1,] 1 0 2
[2,] 0 1 -1
[3,] 0 0 0

Because this reduced row echelon form does not have a pivot in each column, we know
the columns of the matrix A are linearly dependent. Because there are 2 pivot columns
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in total, we know the span of the columns of A is ℛ2 which is not ℛ3. Because the set
of vectors {x,y, z} are linearly dependent and do not span ℛ3, they do not form a basis
for ℛ3.

Example 11.10. Using R, find a basis for the null space of the matrix

A = ⎛⎜
⎝

2 4 1 3
−1 −2 6 5
1 2 −3 2

⎞⎟
⎠

Solution
Given the matrix A, we look for non-trivial solutions to Ax = 0

A <- matrix(c(2, -1, 1, 4, -2, 2, 1, 6, -3, 3, 5, 2), 3, 4)
rref(cbind(A, 0))

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 0 0 0
[2,] 0 0 1 0 0
[3,] 0 0 0 1 0

which has solution 𝑥1 = −2𝑥2, 𝑥2 = free, 𝑥3 = 0 and 𝑥4 = 0. This can be represented as

a vector v =
⎛⎜⎜⎜⎜
⎝

−2
1
0
0

⎞⎟⎟⎟⎟
⎠
. Thus,

⎧{{
⎨{{⎩

⎛⎜⎜⎜⎜
⎝

−2
1
0
0

⎞⎟⎟⎟⎟
⎠

⎫}}
⎬}}⎭

is a basis for the null space of A.

We can check this by showing that Av = 0

v <- c(-2, 1, 0, 0)
A %*% v

[,1]
[1,] 0
[2,] 0
[3,] 0

In addition, any linear combination of the basis is also in the null space

A %*% (5*v)
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[,1]
[1,] 0
[2,] 0
[3,] 0

Theorem 11.2. The pivot columns of a matrix A form a basis for the column space of A.

Note: Use the columns of A, not the columns of the matrix in echelon form.

Proof
We will provide just a sketch of the proof here. First, the column space (Definition 11.2)
is the space defined by the linear combination of the columns of A. Thus, the span of
any subset of the vectors that make up the columns of A must, by definition, be in the
column space of A, because any linear combination of the subset of vectors is just a linear
combination of the full set of vectors with the coefficients of the vectors in the subset
with the same coefficients and the coefficients of the vectors not in the subset equal to 0.
Thus, the span of the subset of the vectors is contained within the span of the columns
of A, which is defined as the column space.
Now, choose the subset of columns of A that correspond to the pivot columns of the
reduced row echelon form of A. If the span of the columns of A = ℛ𝑝, then 1) there
must be 𝑝 pivot columns in the reduced row echelon form of A and 2) there are 𝑝 vectors
in the subset of vectors where the columns of A are pivot columns. Thus, the subset
of vectors spans ℛ𝑝 (the column space) and, by definition, there are 𝑝 pivot columns
(therefore there is a pivot in each column) so the subset of vectors defined by the pivot
columns of A are linearly independent.

Example 11.11. Find a basis for the column space of the matrix

A = ⎛⎜
⎝

3 1 2 −3
4 1 −3 −2
4 −1 −3 1

⎞⎟
⎠

Solution
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Given the matrix A, we first find its reduced row echelon form

⎛⎜
⎝

1 0 0 −11/34
0 1 0 −3/2
0 0 1 −9/34

⎞⎟
⎠

which has pivots in the first three columns. Thus, the column space of A, which is defined
as the linear combination of the vectors of A, spans ℛ3 because there are three pivot

columns. The first three columns of A are ⎛⎜
⎝

3
4
4
⎞⎟
⎠
, ⎛⎜
⎝

1
1
−1

⎞⎟
⎠
, and ⎛⎜

⎝

2
−3
−3

⎞⎟
⎠
. Because these 3

vectors are linearly independent (they are each pivot columns in the reduced row echelon
form of A) and they span ℛ3, they form a basis for the column space of A.
Thus, any vector in the columns space of A (for example, the fourth column of A) can
be written as a linear combination of the basis vectors of the columns space of A.

Example 11.12.

Find a basis for the column space of the matrix

⎛⎜⎜⎜⎜
⎝

−4 1
8 −2
6 3
9 7

⎞⎟⎟⎟⎟
⎠

Solution
Given the matrix A, we first find its reduced row echelon form

⎛⎜⎜⎜⎜
⎝

1 0
0 1
0 0
0 0

⎞⎟⎟⎟⎟
⎠

which has pivots in the first two columns. Thus, the column space of A, which is defined
as the linear combination of the vectors of A, spans ℛ2 because there are two pivot

columns. The first two columns of A are
⎛⎜⎜⎜⎜
⎝

−4
8
6
9

⎞⎟⎟⎟⎟
⎠

and
⎛⎜⎜⎜⎜
⎝

1
−2
3
7

⎞⎟⎟⎟⎟
⎠
. Because these 2 vectors

are linearly independent (they are each pivot columns) and they span ℛ2, they form a
basis for the column space of A.
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Note however, that the first two columns of the reduced row echelon form of A (the

vectors
⎛⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟
⎠

and
⎛⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟
⎠
) do not form a basis for the column space of A. This can be seen

because The first two columns of A have non-zero entries in the 3rd and 4th elements.
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12 Dimension and Rank

library(dasc2594)

12.1 Coordinate systems

Recall the idea of polynomials (e.g., a polynomial of order 𝑝 is 𝑎1𝑥𝑝+𝑎2𝑥𝑝−1+…+𝑎𝑝𝑥1+𝑎𝑝+1𝑥0)
where the polynomials 𝑥𝑝, 𝑥𝑝−1,… , 𝑥1, 𝑥0 form a set of powers up to the power 𝑝 of 𝑥 from
which the coefficients 𝑎𝑝,… , 𝑎𝑝+1 can be used to make any polynomial of order 𝑝. It can be
said that the powers of 𝑥 (𝑥𝑝, 𝑥𝑝−1,… , 𝑥1, 𝑥0) form a basis for all polynomials of order 𝑝.
In the previous section, we extended this analogy to vector spaces using the concept of
a minimal spanning set. Consider the basis b1,… ,b𝑘 for a subspace ℋ of ℛ𝑛 where
span{b1,… ,b𝑘} = ℋ. Because the set b1,… ,b𝑘 is a basis, the set of vectors is linearly
independent. Then, because the set b1,… ,b𝑘 is a basis, we have the following result.

Theorem 12.1. For each vector a in the subspace ℋ of ℛ𝑛, and a basis b1,… ,b𝑘, there is
a unique set of coefficients 𝑥1,… , 𝑥𝑘 such that

a = 𝑥1b1 +⋯+ 𝑥𝑘b𝑘

Proof
In class: assume contradiction that there are two ways 𝑥1,… , 𝑥𝑘 and 𝑦1,… , 𝑦𝑘… Show
that this violates the assumption of linear dependence.

Definition 12.1. Let ℬ = {b1,… ,b𝑘} be a basis for a subspace ℋ of ℛ𝑛. Then, for each
a ∈ ℋ, the coordinates of a with respect to the basis ℬ are the set of coefficients {𝑥1,… , 𝑥𝑘}
where

a = 𝑥1b1 +⋯+ 𝑥𝑘b𝑘.
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Example 12.1. Let ℬ =
⎧{
⎨{⎩

b1 = ⎛⎜
⎝

3
0
1
⎞⎟
⎠

,b2 = ⎛⎜
⎝

2
−3
1
⎞⎟
⎠

,b3 = ⎛⎜
⎝

0
0
1
⎞⎟
⎠

⎫}
⎬}⎭

and a = ⎛⎜
⎝

5
6
1
⎞⎟
⎠
. What are

the coordinates of a with respect to the basis ℬ?

Solution

It can be seen that a = 3b1 − 2b2 + 0b3 because 3⎛⎜
⎝

3
0
1
⎞⎟
⎠

− 2⎛⎜
⎝

2
−3
1
⎞⎟
⎠

+ 0⎛⎜
⎝

0
0
1
⎞⎟
⎠

= ⎛⎜
⎝

5
6
1
⎞⎟
⎠
.

Thus the coordinates of a with respect to ℬ are x = ⎛⎜
⎝

3
−2
0
⎞⎟
⎠

Now, the question is how to find such a solution in general. What we know is that if
we write the matrix B = (b1 b2 b3), then the coefficients for the vector x are the
solutions to the matrix equation

Bx = a
Notice that this is the same matrix equation as Ax = b but written in different notation
that denotes that B is a basis. Because B is a basis, we know that there is a pivot in
every column which tells us that as long as a is in the columnspace of B, there will be
a unique solution for the coordinates x. Using an augmented matrix approach, you can
solve for x using elementary row operations applied to the matrix

(B a) = ⎛⎜
⎝

3 2 0 5
0 −3 0 6
1 1 1 1

⎞⎟
⎠

𝑅𝑅𝐸𝐹∼ ⎛⎜
⎝

1 0 0 3
0 1 0 −2
0 0 1 0

⎞⎟
⎠

which gives the solution that x = ⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= ⎛⎜
⎝

3
−2
0
⎞⎟
⎠

In R, this can be done as

b1 <- c(3, 0, 1)
b2 <- c(2, -3, 1)
b3 <- c(0, 0, 1)
a <- c(5, 6, 1)

rref(cbind(b1, b2, b3, a))

b1 b2 b3 a
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[1,] 1 0 0 3
[2,] 0 1 0 -2
[3,] 0 0 1 0

12.2 Dimension of a subspace

Definition 12.2. The dimension dim(ℋ) of a nonzero subspace ℋ of ℛ𝑛 is the number of
(nonzero) vectors that make up a basis ℬ for ℋ. The dimension of the subspace ℋ = {0}
that contains only the 0 vectors is defined as 0.

Example 12.2. Note that under this definition, the basis ℬ is not unique. For example, the
following bases for the 3-dimensional subspace ℋ of ℛ3 both have three linearly independent
vectors.

ℬ1 =
⎧{
⎨{⎩
⎛⎜
⎝

1
0
0
⎞⎟
⎠

,⎛⎜
⎝

0
1
0
⎞⎟
⎠

,⎛⎜
⎝

0
0
1
⎞⎟
⎠

⎫}
⎬}⎭

ℬ2 =
⎧{
⎨{⎩
⎛⎜
⎝

1
1
0
⎞⎟
⎠

,⎛⎜
⎝

0
1
0
⎞⎟
⎠

,⎛⎜
⎝

1
0
1
⎞⎟
⎠

⎫}
⎬}⎭

Let x = ⎛⎜
⎝

3
4
0
⎞⎟
⎠
. What are the coordinates of x with respect to ℬ1 and ℬ2?

Solution
Under the basis ℬ1, the coordinates of x with respect to the basis ℬ1 are 𝑎1 = 3, 𝑎2 = 4,
and 𝑎3 = 0 because

x = 𝑎1b1 + 𝑎2b2 + 𝑎3b3 = ⎛⎜
⎝

3
4
0
⎞⎟
⎠

= 3⎛⎜
⎝

1
0
0
⎞⎟
⎠

+ 4⎛⎜
⎝

0
1
0
⎞⎟
⎠

+ 0⎛⎜
⎝

0
0
1
⎞⎟
⎠

,

which we write as [x]𝐵1
= ⎛⎜

⎝

3
4
0
⎞⎟
⎠

to denote that these are the coordinates of the vector x

with respect to the basis ℬ1.
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The coordinates of x with respect to the basis ℬ2 are 𝑎1 = 3, 𝑎2 = 1, and 𝑎3 = 0 because

x = 𝑎1b1 + 𝑎2b2 + 𝑎3b3 = ⎛⎜
⎝

3
4
0
⎞⎟
⎠

= 3⎛⎜
⎝

1
1
0
⎞⎟
⎠

+⎛⎜
⎝

0
1
0
⎞⎟
⎠

+ 0⎛⎜
⎝

1
0
1
⎞⎟
⎠

.

which we write as [x]𝐵2
= ⎛⎜

⎝

3
1
0
⎞⎟
⎠

to denote that these are the coordinates of the vector x

with respect to the basis ℬ2..
We can get these coordinates using R by creating augmented matrices and using row
operations. For example, the coordinates of x with respect to ℬ1 are

B1 <- matrix(c(1, 0, 0, 0, 1, 0, 0, 0, 1), 3, 3)
B1

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

x <- c(3, 4, 0)
x

[1] 3 4 0

# augmented matrix
cbind(B1, x)

x
[1,] 1 0 0 3
[2,] 0 1 0 4
[3,] 0 0 1 0

# rref of augmented matrix
rref(cbind(B1, x))

x
[1,] 1 0 0 3
[2,] 0 1 0 4
[3,] 0 0 1 0

150



which gives the coordinates

rref(cbind(B1, x))[, 4]

[1] 3 4 0

The coordinates of x with respect to the basis ℬ2 are

B2 <- matrix(c(1, 1, 0, 0, 1, 0, 1, 0, 1), 3, 3)
B2

[,1] [,2] [,3]
[1,] 1 0 1
[2,] 1 1 0
[3,] 0 0 1

x <- c(3, 4, 0)
x

[1] 3 4 0

# augmented matrix
cbind(B2, x)

x
[1,] 1 0 1 3
[2,] 1 1 0 4
[3,] 0 0 1 0

# rref of augmented matrix
rref(cbind(B2, x))

x
[1,] 1 0 0 3
[2,] 0 1 0 1
[3,] 0 0 1 0

which gives the coordinates

rref(cbind(B2, x))[, 4]

[1] 3 1 0
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Example 12.3. Also note that if two subspaces ℋ1 and ℋ2 have the same dimension (i.e.,
dim(ℋ1) = dim(ℋ2) = 𝑝), this does not mean that these are the same subspaces. For example,
Let ℋ1 and ℋ2 be subspaces of ℛ3 of dimension 2 with respective bases

ℬ1 =
⎧{
⎨{⎩
⎛⎜
⎝

1
0
0
⎞⎟
⎠

,⎛⎜
⎝

0
1
0
⎞⎟
⎠

⎫}
⎬}⎭

ℬ2 =
⎧{
⎨{⎩
⎛⎜
⎝

1
0
0
⎞⎟
⎠

,⎛⎜
⎝

0
0
1
⎞⎟
⎠

⎫}
⎬}⎭

.

Note that the subspace defined by the span of the basis vectors in ℬ1 is a plane in the x-y
axes and the subspace defined by the span of the basis vectors in ℬ2 is a plane in the x-z axes.

What is the dimension of a basis for ℛ𝑛?

12.3 Rank

Definition 12.3. The rank of a matrix A, denoted as rank(A), is the dimension of the
column space of 𝒜.

Recall that the pivot columns of A form a basis for the column space of A. Hence, the number
of pivot columns in the matrix A is the rank of the matrix A.

Example 12.4. Determine the rank of the following matrices

1) A = ⎛⎜
⎝

−7 1 −5 9
5 −6 4 8
−4 −1 −2 0

⎞⎟
⎠

2) B =
⎛⎜⎜⎜⎜⎜⎜
⎝

5 −1 3
−6 4 −5
6 6 0
−7 −25 9
8 26 −9

⎞⎟⎟⎟⎟⎟⎟
⎠

3) C = ⎛⎜
⎝

3 −5 1 −8 −1
−2 −6 −9 9 −3
−4 5 4 8 2

⎞⎟
⎠
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Solution
Using Definition 12.3, the rank of A is equal to the dimension of the column space of A
where the dimension can be found by counting the number of pivot columns.

1) ⎛⎜
⎝

−7 1 −5 9
5 −6 4 8
−4 −1 −2 0

⎞⎟
⎠

𝑅𝑅𝐸𝐹∼ ⎛⎜
⎝

1 0 0 200/27
0 1 0 −34/9
0 0 1 −349/27

⎞⎟
⎠

which has 3 pivot columns.

Thus, rank(A) = 3

2)
⎛⎜⎜⎜⎜⎜⎜
⎝

5 −1 3
−6 4 −5
6 6 0
−7 −25 9
8 26 −9

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑅𝑅𝐸𝐹∼
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 1/2
0 1 −1/2
0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

which has 2 pivot columns. Thus,

rank(B) = 2

3) ⎛⎜
⎝

3 −5 1 −8 −1
−2 −6 −9 9 −3
−4 5 4 8 2

⎞⎟
⎠

𝑅𝑅𝐸𝐹∼ ⎛⎜
⎝

1 0 0 −465/191 −6/191
0 1 0 8/191 42/191
0 0 1 −93/191 37/191

⎞⎟
⎠

which has 3

pivot columns. Thus, rank(C) = 3

Theorem 12.2 (The Rank Theorem). If a matrix A has 𝑛 columns, then rank(A) +
dim(null(A)) = 𝑛

Proof
The rank(A) is number of linearly independent columns. The dimension for the null(A)
is the number of linearly dependent columns of A (non-trivial solutions to Ax = 0).

The following theorem states that any 𝑝 vectors in ℛ𝑝 that are linearly independent must span
ℛ𝑝.

Theorem 12.3 (The Basis Theorem). Let ℋ be a p-dimensional subspace of ℛ𝑛.

1) Then any linearly independent set of 𝑝 elements in ℋ is a basis for ℋ.

2) Equivalently, any set of 𝑝 elements of ℋ that span ℋ is a basis for ℋ
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Proof
We consider the two statements in the theorem above.

1) Each of the 𝑝 vectors are in ℋ and the set of vectors in ℋ are linearly independent.
Thus, the span of the set of vectors is ℛ𝑝. We have examples where two subspaces
have the same dimension but are not equal, however, because each vector is in ℋ
and ℋ is a subspace, all linear combinations of the vectors are in ℋ. Thus, the set
of 𝑝 vectors span ℋ. Thus, the set of vectors spans the subspace and are linearly
independent which satisfies the conditions of Definition 11.4.

2) The set of 𝑝 vectors span ℋ. Because ℋ is a 𝑝-dimensional subspace of ℛ𝑛, each
vector must be linearly independent. If the vectors were not linearly independent,
the 𝑝 vectors would not span a 𝑝-dimensional space. Thus, the set of 𝑝 vectors span
ℋ. Thus, the set of vectors spans the subspace and are linearly independent which
satisfies the conditions of Definition 11.4.

Theorem 12.4 (Invertible Matrix Theorem Yet Again). Let A be a 𝑛 × 𝑛 matrix. Then, in
addition to the current conditions from Theorem 9.5, the following statements are equivalent
to A being an invertible matrix:

a) The columns of A form a basis for ℛ𝑛

b) col(A) = ℛ𝑛

c) dim(col(A)) = 𝑛
d) rank(A) = 𝑛
e) null(A) = {0}
f) dim(null(A)) = 0
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13 Determinants

• 3 Blue 1 Brown – The determinant

library(tidyverse)
library(dasc2594)

Definition 13.1. The determinant det(A) is a function of a square 𝑛 × 𝑛 matrix A whose
output is a real number that satisfies the following properties based on elementary row opera-
tions

1) The determinant of the 𝑛 × 𝑛 identity matrix I is equal to 1

2) If a scalar multiple of one row of A is added to another row of A, then the determinant
det(A) is unchanged.

3) Scaling a row of A by a constant 𝑐 multiples the determinant by 𝑐
4) Swapping two rows of a matrix A multiplies the determinant by -1

The determinant is the unique function mapping square matrices to the real number line that
satisfies the above definition.

Let A = (5 3
1 −3). Find det(A).

Solution
We can calculate the determinant det(A) using row operations to get to reduced row
echelon form.
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(5 3
1 −3) det = 𝑥

swap row 1 and row 2 (1 −3
5 3 ) det = −𝑥

row 2 = -5 * row 1 + row 2 (1 −3
0 18) det = −𝑥

row 2 ÷ 18 (1 −3
0 1 ) det = − 𝑥

18

row 1 = row 1 + 3 * row 2 (1 0
0 1) det = − 𝑥

18
where the last matrix is in reduced row echelon form and is the identity matrix which
has determinant det(I) = 1. Therefore − 𝑥

18 = 1 which implies that 𝑥 = −18 so that
det(A) = −18 Let’s check our answer in R

A <- matrix(c(5, 1, 3, -3), 2, 2)
det(A)

[1] -18

Let A = ( 2 0
−3 5). Find det(A).

Solution
We can calculate the determinant det(A) using row operations to get to reduced row
echelon form.

( 2 0
−3 5) det = 𝑥

multiply row 1 by 1
2 ( 1 0

−3 5) det = 𝑥
2

multiply row 2 by −1
3 (1 0

1 −5
3
) det = −𝑥

6

row 2 = row 2 - row 1 (1 0
0 −5

3
) det = −𝑥

6

multiply row 2 by − 3
5 (1 0

0 1) det = 𝑥
10

where the last matrix is in reduced row echelon form and is the identity matrix which has
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determinant det(I) = 1. Therefore 𝑥
10 = 1 which implies that 𝑥 = 10 so that det(A) = 10

Let’s check our answer in R

A <- matrix(c(2, -3, 0, 5), 2, 2)
det(A)

[1] 10

13.1 Determinants of 2 × 2 matrices

Definition 13.2. If A = (𝑎 𝑏
𝑐 𝑑) is a 2 × 2 matrix, the determinant det(A) = 𝑎𝑑 − 𝑏𝑐

Let A = (5 3
1 −3). What is det(A)?

Solution

Using Definition 13.2 , the determinant of A = (𝑎 𝑏
𝑐 𝑑) is det(A) = 𝑎𝑑−𝑏𝑐 = (5 ∗−3)−

(3 ∗ 1) = −18

13.2 Determinants of 𝑛 × 𝑛 matrices

To better understand determinants of 𝑛×𝑛 matrices, we need to define the two concepts of a
matrix minor and cofactor.

Definition 13.3. For an 𝑛 × 𝑛 matrix A,

a) The (i, j) minor A−𝑖−𝑗 is the (𝑛 − 1) × (𝑛 − 1) matrix obtained by deleting the 𝑖th row
and the 𝑗 column from A

b) The (i, j) cofactor 𝑐𝑖𝑗 is defined using the determinant of the minor where

𝑐𝑖𝑗 = ( − 1)𝑖+𝑗 detA−𝑖−𝑗
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Note: The cofactor of a scalar 𝑎 (a 1 × 1 matrix) is defined as C𝑖𝑗 = (−1)1+1 det(𝑎) = 𝑎.
Note: The leading term in the cofactor definition ( − 1)𝑖+𝑗 defines a checkerboard pattern
shown below

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

+ − + − ⋯
− + − + ⋯
+ − + − ⋯
− + − + ⋯
⋮ ⋮ ⋮ ⋮ ⋱
+ − + − ⋯

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Example 13.1.

Let A = ⎛⎜
⎝

1 −3 1
4 2 −3
7 4 7

⎞⎟
⎠
.

a) Find the minor A−2−3

b) Find the cofactor 𝑐23

Solution
Using Definition 13.3, the minor A−2−3 is the matrix A with the second row and third
column removed.
Thus, the minor A−2−3 = (1 −3

7 4 ).
In R, this can be found by first defining the matrix A as

A <- matrix(c(1, 4,7, -3, 2, 4, 1, -3, 7), 3,3)

then finding the minor A−2−3 as

A_minor_23 <- A[-2, -3]

The matrix cofactor 𝑐23 = (−1)2+3 detA−2−3 = (−1) ∗ ((1)(4) − (−3)(7)) = −25
In R, given the minor A_minor_23, the cofactor is

(-1)^(2+3) * det(A_minor_23)

[1] -25

Note that in the cofactor definition of a 𝑛 × 𝑛 matrix it is assumed that you can calculate
the determinant of the 𝑛 − 1 × 𝑛 − 1 minor A−𝑖−𝑗. From this we see that each of the 𝑛 × 𝑛
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cofactors of A are themselves the (signed) determinants of 𝑛 − 1 × 𝑛 − 1 submatrices (the
matrix minors). Thus, solving for all cofactors in general requires a recursive definition where
smaller and smaller submatrices are evaluated.

Theorem 13.1 (Cofactor exapansion). Let A be an 𝑛×𝑛 matrix with 𝑖𝑗th elements 𝑎𝑖𝑗. Then

a) The cofactor expansion along the 𝑖th row (for any fixed row 𝑖) is

det(A) =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑐𝑖𝑗 = 𝑎𝑖1𝑐𝑖1 + 𝑎𝑖2𝑐𝑖2 +⋯+ 𝑎𝑖𝑛𝑐𝑖𝑛

b) The cofactor expansion along the 𝑗th column (for any fixed column 𝑗) is

det(A) =
𝑛

∑
𝑖=1

𝑎𝑖𝑗𝑐𝑖𝑗 = 𝑎1𝑗𝑐1𝑗 + 𝑎2𝑗𝑐2𝑗 +⋯+ 𝑎𝑛𝑗𝑐𝑛𝑗

Proof
This is quite complex. For those interested, an example is available here

Note: The above theorem states that there are actually 2𝑛 ways to calculate the determinant–
one for each row and column of A.

Use the minor/cofactor definition to calculate the determinant of the 3 × 3 matrix A =

⎛⎜
⎝

5 0 2
1 3 3
2 −4 1

⎞⎟
⎠

Solution
The determinant of A can be found by using Theorem 13.1 by expanding either down a
row or a column. Because the first row contains a 0, we will use the cofactor expansion
theorem. The cofactor expansion along the first row is

det(A) = 𝑎11𝑐11 + 𝑎12𝑐12 + 𝑎13𝑐13
where 𝑎𝑖𝑗 is the 𝑖𝑗th element of A. Thus, the cofactor expansion is

det(A) = 5𝑐11 + 0𝑐12 + 2𝑐13
This implies that we only need to find the cofactors 𝑐11 and 𝑐13 (but not 𝑐12 because
it gets multiplied by 0). Thus, the cofactor expansion along the first row only requires
finding 2 cofactors 𝑐11 and 𝑐13.
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The minor A−1−1 is the matrix A with the first row and first column removed and is

A−1−1 = ( 3 3
−4 1). The minor A−1−3 is the matrix A with the first row and third

column removed and is A−1−3 = (1 3
2 −4). The cofactor 𝑐11 is given by

𝑐11 = (−1)1+1((3)(1) − (3)(−4)) = 15

and the cofactor 𝑐13 is given by

𝑐13 = (−1)1+3((1)(−4) − (3)(2)) = −10

Combining these, the determinant of A using the cofactor expansion is

det(A) = 𝑎11𝑐11 + 𝑎12𝑐12 + 𝑎13𝑐13
= (5)(15) + (0)(𝑐12) + (2)(−10)
= 55

Use the minor/cofactor definition to calculate the determinant of the 3 × 3 matrix A =

⎛⎜
⎝

2 4 −1
−3 0 2
2 0 4

⎞⎟
⎠

Solution
The determinant of A can be found by using Theorem 13.1 by expanding either down a
row or a column. Because the second row contains multiple zeros, we will use the cofactor
expansion theorem. The cofactor expansion along the second column is

det(A) = 𝑎12𝑐12 + 𝑎22𝑐22 + 𝑎32𝑐32
= 4𝑐12 + 0𝑐22 + 0𝑐32

This implies that we only need to find the cofactor 𝑐12 (but not 𝑐22 and 𝑐32 because these
get multiplied by 0). Thus, the cofactor expansion along the second column only requires
finding the single cofactor 𝑐12.
The minor A−1−2 is the matrix A with the first row and second column removed and is

A−1−2 = (−3 2
2 4). The cofactor 𝑐12 is given by

𝑐12 = (−1)1+2((−3)(4) − (2)(2)) = 16.
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Thus, the determinant of A using the cofactor expansion is

det(A) = 𝑎12𝑐12 + 𝑎22𝑐22 + 𝑎32𝑐32
= (4)(16) + (0)(𝑐22) + (0)(𝑐32)
= 64

Let A be a 𝑛 × 𝑛 matrix that has all zero entries for the 𝑗th row. Find det(A)

Solution
Using the cofactor expansion theorem (Theorem 13.1), expand the determinant along the
𝑗th row. Then, because all entries of the 𝑗th row of A are zero, this gives

det(A) = 𝑎𝑗1𝑐𝑗1 + 𝑎𝑗2𝑐𝑗2 +⋯+ 𝑎𝑗𝑛𝑐𝑗𝑛
= 0𝑐𝑗1 + 0𝑐𝑗2 +⋯+ 0𝑐𝑗𝑛
= 0

Theorem 13.2. The determinant of a matrix A is equal to the determinant of its transpose
A′. In other words, det(A) = det(A′)

Proof
Follows directly from cofactor expansion theorem. The expansion along a given
row/column of A is equivalent to expansion along the corresponding column/row of
A′ (notice the row/column for A got swapped to column/row for A′).

13.3 Properties of determinants

Theorem 13.3. A 𝑛 × 𝑛 square matrix A is invertible if and only if det(A) ≠ 0

Proof
From the invertible matrix theorem (Theorem 9.5), we know that the matrix A is in-
vertible if and only if every column of A is a pivot column. Therefore, each column is
linearly independent from the other columns. Based on the example above, if the rows
were not linearly independent, the determinant would be equal to 0 (as row operations
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could create a row/column of all zeros). Thus, if the determinant is not 0, the columns
of A are linearly independent and the matrix is invertible.

Theorem 13.4. If A and B are 𝑛 × 𝑛 matrices, I is an 𝑛 × 𝑛 identity matrix, and 𝑐 is a
scalar, we have

a) det(I) = 1
b) det(A) = det(A′)
c) det(A−1) = 1/ det(A) if det(A) ≠ 0 (A is invertible)

d) det(AB) = det(A)det(B)
e) det(𝑐A) = 𝑐𝑛 det(A)

13.4 Cramer’s Rule and Determinants

• 3 Blue 1 Brown – Cramer’s rule

While commonly used for theoretical results, Cramer’s rule is not commonly used in applied
linear algebra. As such, we will mention Cramer’s rule but not focus on it.

Theorem 13.5 (Cramer’s Rule). Let A be a 𝑛 × 𝑛 invertible matrix. Define A𝑖(b)
as the matrix A with the 𝑖th column replace by the vector b. For example, A𝑖(b) =
(a1 ⋯ a𝑖−1 b a𝑖+1 ⋯ a𝑛). Then, for any b ∈ ℛ𝑛, the unique solution to Ax = b has
entries given by

𝑥𝑖 =
det(A𝑖(b))
det(A) for 𝑖 = 1, 2,… , 𝑛

Example 13.2. In Cramer’s rule, why do we know

• the solution is unique for any b?

• the determinant det(A) ≠ 0?
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14 Determinants and volumes

library(tidyverse)
library(dasc2594)

Definition 14.1. The parallelpiped defined by 𝑛 vectors a1,a2,… ,a𝑛 ∈ ℛ𝑛 with coefficients
𝑥1, 𝑥2,… , 𝑥𝑛 is the subset

𝒫 = {𝑥1a1 + 𝑥2a2 +⋯+ 𝑥𝑛a𝑛|0 ≤ 𝑥1, 𝑥2,… , 𝑥𝑛 ≤ 1}

The determinant is a function that takes the vectors a1,a2,… ,a𝑛 that make up the columns
of A and returns the volume of the parallelpiped 𝒫 from Definition 14.1.

Example 14.1. The unit cube: in class–use standard vectors e1, e2, and e3

Example 14.2. parallelograms in ℛ2: the unit square

df_vector <- data.frame(x = c(1, 0), y = c(0, 1))
df_polygon <- data.frame(x = c(0, 1, 1, 0), y = c(0, 0, 1, 1))
p1 <- ggplot() +

geom_segment(aes(x = 0, xend = df_vector$x[1], y = 0, yend = df_vector$y[1]), arrow = arrow()) +
geom_segment(aes(x = 0, xend = df_vector$x[2], y = 0, yend = df_vector$y[2]), arrow = arrow()) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_polygon(data = df_polygon, aes(x = x, y = y),

fill = "grey", alpha = 0.5) +
ggtitle("Area of unit cube")

p1
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Which implies that if A = (1 0
0 1) has det(A) = 1 because A = I the identity matrix.

det(matrix(c(1, 0, 0, 1), 2, 2))

[1] 1

parallelograms in ℛ2: A larger square

df_vector <- data.frame(x = c(2, 0), y = c(0, 2))
df_polygon <- data.frame(x = c(0, 2, 2, 0), y = c(0, 0, 2, 2))
p1 <- ggplot() +

geom_segment(aes(x = 0, xend = df_vector$x[1], y = 0, yend = df_vector$y[1]), arrow = arrow()) +
geom_segment(aes(x = 0, xend = df_vector$x[2], y = 0, yend = df_vector$y[2]), arrow = arrow()) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4)) +
geom_polygon(data = df_polygon, aes(x = x, y = y),

fill = "grey", alpha = 0.5) +
ggtitle("Area of unit cube")

p1
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Which implies that if A = (2 0
0 2) has det(A) = 4 because A = 2I and the rule is for a

constant 𝑐, det(𝑐A) = 𝑐𝑛 det(A)

det(matrix(c(2, 0, 0, 2), 2, 2))

[1] 4

The Shiny app below allows you to plot the vector for any (𝑥, 𝑦) pair of your choosing.

library(shiny)
runGitHub(rep = "multivariable-math",

username = "jtipton25",
subdir = "shiny-apps/chapter-14/determinants-volume/")

Theorem 14.1 (Determinants and Volume). Let a1,a2,… ,a𝑛 be vectors in ℛ𝑛, let 𝒫 be the
parallelpiped determined by these vectors, and let A be the matrix with columns a1,a2,… ,a𝑛.
Then, the absolute value of the determinant of A is the volume of the parallelpiped 𝒫:

|det(A)| = volume(𝒫)
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Proof
Recall the 4 defining properties (Definition 13.1) that characterize the determinant. These
properties also characterize the absolute value of the determinant.
From the 4 defining properties, the absolute value of the determinant |det | is a function
on square 𝑛 × 𝑛 matrices that satisfies the properties

a) Row replacement (e.g., row i = row i + c * row j) of A does not change |det(A)|
b) Scaling a row of A by a scalar 𝑐 changes |det(A)| by multiplication by |𝑐|
c) Swapping two rows of A does not change |det(A)|
d) The determinant of the identity matrix I is 1

Like the determinant and its 4 defining characteristics (Definition 13.1), the absolute
value of the determinant is the only function that satisfies this relationship. Define
𝑣𝑜𝑙(𝒫𝐴) as the volume of the parallelpiped defined by the rows of the square matrix A.
In what follows, we will show that 𝑣𝑜𝑙(𝒫𝐴) also satisfies the 4 defining characteristics
of the absolute value of the determinant and, by the uniqueness of the function of the
absolute value of the determinant, is equivalent to the absolute value of the determinant.
c) We start with showing that row swaps have no impact of the volume of the parallelpiped.
Swapping two rows of A just reorders the vectors a1,a2,… ,a𝑛 and the order has no
impact of the calculation of the volume (e.g., area in 2d = length * width = width *
length)
a) Consider a row replacement of a𝑖 ← a𝑖 + 𝑐a𝑗 for some 𝑗 ≠ 𝑖. Because reordering has
no effect on the volume of the parallelpiped, assume WLOG (without loss of generality–
fancy math speak for this one case works for all the other possible cases) that we are
replacing the last row (a𝑛 ← a𝑛 + 𝑐a𝑗). Then, the area of the parallelpiped is defined
as the base times the height. Let the “base” be the set of vectors a1,a2,…a𝑛−1 which
are the same for the original matrix and the row-replaced matrix. Therefore, if there is
a difference in volume of the parallelpiped, it must be due to a difference in height. By
definition, a𝑗 ∈ span{a1,a2,… ,a𝑛−1} so 𝑐a𝑗 is a vector that points in the same direction
as the “base” which implies that translation of a𝑛 by 𝑐a𝑗 is parallel to the “base”. As
this is a parallel translation, the distance from the “base” to a𝑛 must be equal to the
distance from the “base” to a𝑛 + 𝑐a𝑗 (the definition of parallel) which means the height
is unchanged and therefore the volume of 𝑣𝑜𝑙(𝒫𝐴) is unchanged by row replacement.
Draw an example here
b) WLOG assume we are scaling the last row a𝑛 (we can always swap rows without chang-
ing volume so this is ok). Scaling a𝑛 by a scalar 𝑐 leaves the “base” of the parallelpiped
unchanged (the “base” is defined as a1,a2,… ,a𝑛−1 which are unchanged). Therefore,
the only question is whether the height from the base is changed when scaling a𝑛 by |𝑐|.
In fact, scaling the vector a𝑛 by |𝑐| changes the height by |𝑐| and therefore the volume
𝑣𝑜𝑙(𝒫𝐴) is scaled by |𝑐|.
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Draw an example in class
d) The identity matrix having volume 1 is easy. The vectors of the identity matrix I
define a unit cube (technically a hypercube) which has area equal to the product of the
lengths of each of their sides, which are each 1.
Because the absolute value of the determinant |det | is the only function that satisfies,
these properties, we have

𝑣𝑜𝑙(𝒫𝐴) = | det(A)|

Note: Because det(A) = det(A′), the absolute value of the determinant is equal to the
volume of the parallelpiped defined by the columns of A (we could just have easily done all
the calculations on the columns of A as the rows of A).

Example 14.3. 1 by 1 matrix 𝑎 (length) has det(𝑎) = 𝑎

Example 14.4. 2 by 2 matrix (𝑎 𝑐
𝑏 𝑑)

Example 14.5. Find the area of a parallelogram with sides defined by the vectors (2
4) and

(−1
2 )

area of a triangle – choose two sides and find area of parallelogram and divide by 2

Example 14.6. Recall that in data science, a probability distribution is function that has
volume under the surface of one. For common distributions, particularly the normal/Gaussian
distribution, the determinant is the factor that scales the function so that the volume under
the surface is one.

The vector y is said to have a multivariate normal distribution with mean 𝜇 and covariance
matrix Σ if the probability density function of y is

𝑓(y) = (2𝜋)−𝑛/2|det(Σ)|−1/2𝑒− 1
2 (y−𝜇)′Σ−1(y−𝜇)
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Notice in this equation that the determinant det(Σ) plays a key role in the definition of the
probability distribution. This is because

∫
y
(2𝜋)−𝑛/2𝑒− 1

2 (y−𝜇)′Σ−1(y−𝜇) 𝑑y = | det(Σ)|1/2

which implies that
∫y(2𝜋)

−𝑛/2𝑒− 1
2 (y−𝜇)′Σ−1(y−𝜇) 𝑑y

|det(Σ)|1/2 = 1

In probability and statistics, the denominator is known as the “normalizing constant.”

14.1 Volumes of Parallelpipeds

Let a1 and a2 be nonzero vectors. Then, for any scalar 𝑐, the area of the parallelpiped defined
by a1 and a2 is the same as the area of the parallelpiped defined by the vectors a1 and a2+𝑐a1
(an elementary column operation).

Draw a parallelpiped in class. Recall that areas of a parallelpiped are defined (in 2 dimensions)
as the length of the base times the height perpendicular to the base. In 3 dimensions, the
volume of a parallelpiped is the base times the width (the area of the base) times the height.

14.2 Volumes of Linear Transformations

Recall linear transformations 𝑇 ∶ ℛ𝑛 → ℛ𝑛 (Section Chapter 7) where for any x ∈ ℛ𝑛 (the
domain), 𝑇 (x) = Ax ∈ ℛ𝑛 (the codomain).

Theorem 14.2. Let 𝒮 be a set in the domain that has a volume 𝑣𝑜𝑙(𝒮). Then, the volume of
the image of the set under the transformation 𝑇 (𝒮) is 𝑣𝑜𝑙(𝑇 (𝒮)) = | det(A)|𝑣𝑜𝑙(𝒮)
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15 Vector Spaces and Subspaces

• 3 Blue 1 Brown – Abstract vector spaces

Recall the definition of a subspace:

A subspace ℋ of a vector space 𝒱 is a subset of 𝒱 such that

• ℋ contains the zero vector – 0 ∈ ℋ
• ℋ is closed under vector addition. Therefore, for u and v in ℋ, the sum u + v is in ℋ
• ℋ is closed under scalar multiplication. Therefore, for u in ℋ and a scalar 𝑎, the product

𝑎u is in ℋ

A consequence of this definition is that a subspace ℋ is closed under linear combinations.

15.1 Null space and column space

Also, recall the special subspaces of the column space and the null space.

15.1.1 Null space

The null space null(A) of an 𝑚× 𝑛 A is the set of all solutions of the homogeneous equation
Ax = 0

Another way to write null(A) is

null(A) = {x ∶ x ∈ ℛ𝑛 and Ax = 0}

Theorem 15.1. The null space of an 𝑚× 𝑛 matrix A is a subspace of ℛ𝑛.

Proof
To show that the null space of A, denoted null(A), is a subspace we need to show the
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following

1) The zero vector 0 is in the null space of A

2) The null space of A is closed under addition

3) The null space of A is closed under scalar multiplication

The null space of A is defined as the set of vectors x such that Ax = 0.

1) First, we show that the zero vector is in the subspace by setting x = 0. Thus,
because A0 = 0, the zero vector 0 is in the null space of A .

2) Next, let u and v be vectors in the null space of A. Thus, by the definition of the
null space we have Au = 0 and Av = 0. Consider the vector u + v and consider
A(u + v) = Au + Av = 0 + 0 = 0. Thus u + v is in the null space of A.

3) Finally, let u be a vector in the null space of A and let 𝑐 be a scalar. Thus, by the
definition of the null space we have Au = 0. Then, consider A(𝑐u) = 𝑐Au = 𝑐0 = 0

Because the three requirements for a subspace are met, this gives us that the null space
of A is a subspace.

As a consequence, there will exist a set of vectors that span the null space null(A). However,
the null space of A is defined implicitly. This means that the null space of A is not obvious
given the vectors of A and must be checked/calculated.

Example 15.1.

• In class

Find a spanning set for null(A) where

A = ⎛⎜
⎝

7 −2 7 −4 5
2 0 3 3 9
−5 2 −5 7 −2

⎞⎟
⎠

• Find solution to system of homogeneous system of equations Ax = 0

A <- matrix(c(7, 2, -5, -2, 0, 2, 7, 3, -5, -4, 3, 7, 5, 9, -2), 3, 5)
rref(cbind(A, 0))
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[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 1.50 -4.50 0
[2,] 0 1 0 7.25 2.75 0
[3,] 0 0 1 0.00 6.00 0

• Take the general solution and write as a linear combination of vectors where the coeffi-
cients are the free variables.

• general solution 𝑥1 = −1.5𝑥4 + 4.5𝑥5, 𝑥2 = −7.25𝑥4 − 2.75𝑥5, 𝑥3 = −6𝑥5 and both 𝑥4
and 𝑥5 are free. Write out the general solution in vector form.

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

−1.5𝑥4 + 4.5𝑥5
−7.25𝑥4 − 2.75𝑥5

−6𝑥5
𝑥4
𝑥5

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝑥4

⎛⎜⎜⎜⎜⎜⎜
⎝

−1.5
−7.25

0
1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

+ 𝑥5

⎛⎜⎜⎜⎜⎜⎜
⎝

4.5
2.75
−6
0
1

⎞⎟⎟⎟⎟⎟⎟
⎠

• From above, the free variables 𝑥4 and 𝑥5 are multiplied by the vectors u =
⎛⎜⎜⎜⎜⎜⎜
⎝

−1.5
−7.25

0
1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

and v =
⎛⎜⎜⎜⎜⎜⎜
⎝

4.5
2.75
−6
0
1

⎞⎟⎟⎟⎟⎟⎟
⎠

where {u,v} are a spanning set for the null(A)

Example 15.2.

• In class – do another Find a spanning set for null(A) where

15.1.2 Column space

The columns space col(A) of an 𝑚× 𝑛 A is the set of all linear combinations of the columns
of A.

If {a1,… ,a𝑛} are the columns of A, then

col(A) = span(A)
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this can be written in set notation as

col(A) = {b ∶ Ax = b for some x ∈ ℛ𝑛}

Theorem 15.2. The column space of an 𝑚× 𝑛 matrix A is a subspace of ℛ𝑛.

Proof
Do in class

• 0 vector

• sum of vectors

• scalar multiplication

Compared to the null space, the column space is defined explicitly–it is the span of the columns
of A. The definition of the column space results in the fact that col(A) is the range of the
linear transformation x → Ax.

Example 15.3.

• In class

Find a spanning set for col(A) where

A =
⎛⎜⎜⎜⎜
⎝

6 0 4
5 −1 −9
−4 7 4
6 2 9

⎞⎟⎟⎟⎟
⎠
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15.1.3 Understanding the differerneces between the column space and the null
space
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16 Linearly independent sets and bases

library(tidyverse)
library(dasc2594)

Recall that a set of vectors {v1,… ,v𝑛} is linearly independent if the only solution to the
system of equations

𝑥1v1 +⋯+ 𝑥𝑛v𝑛 = 0

is the trivial solution x = 0. In other words, it is not possible to write any of the vectors in
the set {v1,… ,v𝑛} as a linear combination of the other vectors.

Definition 16.1. Let ℋ be a subspace of a vector space 𝒱. Then, the set of vectors ℬ =
{v1,… ,v𝑛} is a basis for ℋ if

• The set of vectors ℬ are linearly independent

• The subspace spanned by ℬ is ℋ. In other words

span(v1,… ,v𝑛) = ℋ

Example 16.1.

• in class–standard basis e1,… e𝑛 which are the columns of the 𝑛 × 𝑛 identity matrixI.

Example 16.2.

• in class–pick 3 vectors of length 3. Are they a basis for ℛ3? What about ℛ4?
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Theorem 16.1 (The Spanning Set Theorem). Let 𝒮 = {v1,… ,v𝑛} be vectors in the vector
space 𝒱 and let ℋ = span(v1,… ,v𝑛)

a) If one of the vectors, say v𝑘, of 𝒮 is a linear combination of the remaining vectors of 𝒮,
then the set formed by removing the vector v𝑘 still spans ℋ

b) If ℋ ≠ {0}, then some subset of 𝒮 spans ℋ.

Proof
We will show the proof for bot parts (a) and (b) of the theroem

a) WLOG assume v𝑛 is a linear combination of v1,… ,v𝑛−1 (if not, permute the labels
to make the linearly dependent vector the 𝑛th vector). Then

v𝑛 = 𝑥1v1 +⋯+ 𝑥𝑛−1v𝑛−1 (16.1)

Because the vectors {v1,… ,v𝑛} span ℋ, any vector b ∈ ℋ can be written as

b = 𝑐1v1 +⋯+ 𝑐𝑛v𝑛 (16.2)

for scalars 𝑐1,… , 𝑐𝑛. Plugging the result from Equation 16.1 into Equation 16.2 shows
that any vector b in ℋ can be written only using the vectors v1,… ,v𝑛−1

b) As the vectors in 𝒮 span ℋ, if there is a linearly dependent vector in 𝒮, this vector
can be removed from 𝒮 and the span of this subset of 𝒮 will still span ℋ. As long
as H ≠ {0}, there must be a least one nonzero vector in S so the removing of
linearly dependent vectors will stop with at least one vector. As all of the linearly
dependent vectors have been removed, the subset of 𝒮 created in this manner will
be a set of linearly independent vectors that span ℋ.

16.1 Bases for null(A) and col(A)

Example 16.3. Find a basis for the col(A) where

set.seed(2021)
A <- matrix(sample(-9:9, 15, replace = TRUE), 5, 3)
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A =
⎛⎜⎜⎜⎜⎜⎜
⎝

−3 −4 5
−4 −4 −3
4 −4 −1
−3 4 2
2 −5 9

⎞⎟⎟⎟⎟⎟⎟
⎠

• Calculate row echelon form and identify the pivot columns. The vectors a1,… ,a𝑛 that
make up the columns of A that are in the pivot columns form a basis for A

• Why is this? Think about the relationship between the columns of A and the vector b
in Ax = b that result in a consistent solution.

Example 16.4. Find a basis for the null(A) where

set.seed(2021)
A <- matrix(sample(-9:9, 15, replace = TRUE), 5, 3)

A =
⎛⎜⎜⎜⎜⎜⎜
⎝

−3 −4 5
−4 −4 −3
4 −4 −1
−3 4 2
2 −5 9

⎞⎟⎟⎟⎟⎟⎟
⎠

• Calculate solutions to homogeneous system of equations, write solution in vector equation
form. Vectors form a basis for null(A)

• note: Facts about the basis for the null space null(A)

1) The spanning set produced using the method above produces a linearly independent set
because the free variables are weights on the spanning vectors.

2) When null(A) contains nonzero vectors, the number of vectors in the spanning set for
null(A) is the number of free variables in the solution of Ax = 0.

Example 16.5. The matrix 4 × 5 A has columns given by the vectors a1,… ,a5 and is row
equivalent to the matrix
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A =
⎛⎜⎜⎜⎜
⎝

1 0 3 −2 1
0 0 3 −2 5
0 0 0 −1 −2
0 0 0 0 0

⎞⎟⎟⎟⎟
⎠

What is a basis for col(A) in terms of the vectors a1,… ,a5

• Note that two matrices that are row equivalent have the same linear dependence rela-
tionsihps between their vectors (but the basis for their column space is different)

Example 16.6. The matrix A is row equivalent to the matrix B

A <- matrix(c(1, 3, 2, 5, 4, 12 , 8, 20, 0, 1, 1, 2, 2, 5, 3, 8, -1, 5, 2, 8), 4, 5)
B <- rref(A)

A =
⎛⎜⎜⎜⎜
⎝

1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

⎞⎟⎟⎟⎟
⎠

B =
⎛⎜⎜⎜⎜
⎝

1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

⎞⎟⎟⎟⎟
⎠

• What is a basis for col(A)?

• What is a basis for col(B)?

• What is span(a1,… ,a5)?

• What is span(b1,… ,b5)?

• Are the spaces spanned by the columns of A and the columns of B the same space?

Theorem 16.2. The pivot columns of a matrix A for a basis for col(A)

Proof
sketch: B rref of A, linearly independent columns of B are same as linearly independent
columns in A. Other (non-pviot) columns are linearly dependent. By spanning set
theorem, non-pivot columns can be removed from the spanning set without changing the
span, leaving only the pivot columns of A as a basis for col($)
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17 Coordinate Systems and Dimension

• 3 Blue 1 Brown – Change of basis

library(tidyverse)
library(dasc2594)
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We already know about the cartesian coordinate system (x, y, z) which has the set of basis
vectors
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e1 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠

e2 = ⎛⎜
⎝

0
1
0
⎞⎟
⎠

e3 = ⎛⎜
⎝

0
0
1
⎞⎟
⎠

However, using the concept of a basis for a subspace ℋ of some vector space 𝒱, we might
want to use a different basis. Luckily, we have learned how to construct bases for col(A) and
null(A).

You might be wondering why we want to create different bases. The usual cartesian basis has
been good enough for me so far (unless you have used polar coordinates). In data science, the
data often live in a high dimensional space (i.e., there are a number of data variables). However,
while the data might have many variables, some of these variables are partially dependent and
thus the space in which the data are embedded might be well approximated using a subspace
of the original variables which can increase computation speed (less computation with fewer
variables – recall from lab how the inverse of X′X took much much longer with larger numbers
of variables). Thus, understanding different coordinate systems and how to change coordinate
systems can lead to more efficient data representation and model fitting.

Theorem 17.1 (The Unique Representation Theorem). Let ℬ = {b1,… ,b𝑛} be a basis for
the vector space 𝒱. Then, for each x in ℬ, there exists a unique set of coefficients 𝑐1,… , 𝑐𝑛
such that

x = 𝑐1b1 +…+ 𝑐𝑛b𝑛

Proof
sketch: vectors of ℬ span 𝒱 so there exists a set of coefficienct 𝑐1,… , 𝑐𝑛 such that

x = 𝑐1b1 +…+ 𝑐𝑛b𝑛

is true. Assume another set of coefficients 𝑑1,… , 𝑑𝑛 exists such that

x = 𝑑1b1 +…+ 𝑑𝑛b𝑛.
Subtract these two equations to get

0 = x − x = (𝑐1 − 𝑑1)b1 +…+ (𝑐𝑛 − 𝑑𝑛)b𝑛.
Because ℬ is linearly independent by definition, all the weights in the equation above
must be 0 (linear independence means the only solution to Ax = 0 is the trivial solution).
Therefore 𝑐𝑖 = 𝑑𝑖 for 𝑖 = 1,… , 𝑛.
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Definition 17.1. Suppose ℬ = {b1,… ,b𝑛} be a basis for the vector space 𝒱 and x ∈ 𝒱. The
coordinates of x with respect to ℬ are the coefficients 𝑐1,… , 𝑐𝑛 such that

x = 𝑐1b1 +…+ 𝑐𝑛b𝑛

Example 17.1. In class using standard basis in 2-dimensions and vector x = (3
2)

Example 17.2. In class using basis in 2-dimensions 𝑏1 = (1
0) and 𝑏2 = (0.5

1 ) and vector

x = (3
2)

transformation_matrix <- tribble(
~ x, ~ y,
1, 0.5,
0, 1) %>%
as.matrix()

p <- plot_transformation(transformation_matrix) +
geom_point(aes(x = 3, y = 2))

p + facet_wrap(~ time, labeller = labeller(time = c("1" = "Standard cooridinates", "2" = "Shear cooridnates")))
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Standard cooridinates Shear cooridnates

17.1 Coordinates in ℛ𝑛

Let x be defined with the standard coordinates. Let ℬ = {b1,… ,b𝑛} be a basis in ℛ𝑛. Define
B = (b1 ⋯ b𝑛) as the matrix with columns the vectors of the basis. Then, the coordinates

[x]𝐵 = ⎛⎜
⎝

[𝑥1]𝐵
⋮

[𝑥𝑛]𝐵
⎞⎟
⎠

of x

with respect to the basis ℬ can be found by solving the matrix equation

B [x]𝐵 = x

The matrix B is called the change-of-coordinates matrix from ℬ to the standard basis in
ℛ𝑛. The solution set (the coefficients) [x]𝐵 can be found using row operations or by using the
fact that because the columns of B spans ℛ𝑛 the matrix B is invertible. Then, the coordinates
of x with respect to the basis ℬ is

[x]𝐵 = B−1x
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Theorem 17.2. Let ℬ = {b1,… ,b𝑛} be a basis for the vector space 𝒱. Then, the coordinate
mapping x → B−1x is a one-to-one and onto transformation from 𝒱 to ℛ𝑛

Proof
First we want to show that multiplication by B−1 defines a linear transformation. First,
take two vectors

u = 𝑐1b1 +…+ 𝑐𝑛b𝑛

and

v = 𝑑1b1 +…+ 𝑑𝑛b𝑛

• First, we show the mapping preserves vector addition

u + v → B−1(u + v) = B−1u + B−1v

which preserves vector addition

• Next, we show the mapping preserves scalar multiplication. Given scalar 𝑎,

𝑎u → B−1(𝑎u) = 𝑎B−1u

which preserves scalar multiplication.

• Therefore, this is a linear transformation. one-to-one and onto come from fact that
B is and 𝑛×𝑛 matrix with 𝑛 pivot columns (𝑛 linearly independent vectors because
it is a basis for ℛ𝑛)

Example 17.3. in class–Give basis in ℛ4, find coefficients with respect to this basis for the
vector x

17.2 Dimension of a vector space

In some sense, we already know about the dimension of a vector space through the concept of
a span. The span of a set of vectors defines the dimension of the vector space.
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Theorem 17.3. In a vector space 𝒱 with basis ℬ = {b1,… ,b𝑛}, any set in 𝒱 containing
more than 𝑛 vectors must be linearly dependent.

Proof
Let {u1,… ,u𝑝} be a set of vectors in 𝒱 with 𝑝 > 𝑛. The coordinate vectors
{Bu1,… ,Bu𝑝} form a linearly dependent set in ℛ𝑛 because there are more vectors (𝑝)
than entries (𝑛) in each vector. Thus, there exist scalars 𝑐1,… , 𝑐𝑝, some nonzero, such
that

𝑐1Bu1 +…+ 𝑐𝑝Bu𝑝 = 0.
which by linearity implies

B(𝑐1u1 +…+ 𝑐𝑝u𝑝) = 0

Because the matrix B is a 𝑛 × 𝑛 matrix with n linearly independent columns, the only way
the equation above can equal 0 is if the vector 𝑐1u1 +…+ 𝑐𝑝u𝑝 = 0 (by the invertible matrix
theorem). Therefore, the set of vectors {u1,… ,u𝑝} is linearly dependent because there are
coefficients that allow the vectors to sum to 0. Thus, we know that for a vector space 𝒱 that
has a basis ℬ = {b1,… ,b𝑛} that consists on 𝑛 vectors, then every linearly independent set of
vectors in 𝒱 contains at most 𝑛 vectors.

Theorem 17.4. If a vector space 𝒱 has a basis with 𝑛 vectors, then every other basis of 𝒱
must also contain exactly 𝑛 vectors.

Proof
Let ℬ1 be a basis of 𝒱 containing 𝑛 vectors and let ℬ2 be any other basis of 𝒱. Because
ℬ1 and ℬ2 are both bases, they both contain sets of linearly independent vectors. As
such, the previous theorem states that each of these bases contain at most 𝑛 vectors
(otherwise the sets wouldn’t be linearly independent). Because ℬ2 is a basis and the
basis ℬ1 contains 𝑛 vectors, ℬ2 must contain at least 𝑛 vectors. These results combined
are only satisfied when ℬ2 contains 𝑛 vectors.

Like the span defined by the columns of a matrix A, there is an abstract concept called
dimension which measures the “size” of a vector space.

Definition 17.2. If 𝒱 is spanned by a finite set of vectors, then 𝒱 is said to be finite dimen-
sional. If 𝒱 is not spanned by a finite set of vectors, 𝒱 is said to be infinite dimensional. The
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smallest set of vectors that spans 𝒱 is a basis for 𝒱 and the number of vectors in this basis is
called the dimension of 𝒱 and written as dim(𝒱). If 𝒱 = {0}, then dim(𝒱) is said to be 0.

Example 17.4. in class - span of 2 or 3 linearly independent vectors

• span, dim, and geometry

Example 17.5. in class - span of 2 or 3 linearly dependent vectors

• span, dim, and geometry

17.3 Subspaces of finite dimension

Theorem 17.5. Let ℋ be a subspace of a finite-dimensional vector space 𝒱. Then, any
linearly independent set in ℋ can be expanded, if necessary to form a basis for ℋ. As ℋ is a
subspace of the finite-dimensional vector space 𝒱, ℋ is a finite-dimensional vector space with

dim(ℋ) ≤ dim(𝒱)

For a vector space of known dimension 𝑝, finding a basis can be simplified by finding a linearly
independent set of size 𝑝.

Theorem 17.6 (The Basis Theorem). Let 𝒱 be a 𝑝 dimensional vector space with 𝑝 ≥ 1. Any
linearly independent subset of 𝑝 vectors is a basis for 𝒱. Equivalently, any set of 𝑝 vectors that
span 𝒱 is automatically a basis for 𝒱.

17.4 Dimensions of null(A) and col(A)

The dimension of null(A) are the number of free variables in Ax = 0 and the dimension of
col(A) is the number of pivot columns of A.
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18 Rank

library(tidyverse)
library(dasc2594)

Definition 18.1. Given an 𝑚 × 𝑛 matrix A, the row space, row(A) is the set of linearly
independent rows of A. Thus, the row space is the span of the rows of A.

Note: the row space of A is the column space of the transposed matrix 𝒜′.

𝑟𝑜𝑤(A) = 𝑐𝑜𝑙(A′)

Example 18.1. in class

Example 18.2. Find basis for row space, column space, and null space of A

18.1 Rank

Definition 18.2. The rank of a matrix A, rank(A) is the dimension of the column space
col(A)

Theorem 18.1 (The Rank Theorem). Let A be an 𝑚×𝑛 matrix. Then the dimension of are
equal. The rank of A equals the number of pivot columns of A and

𝑟𝑎𝑛𝑘(A) + 𝑑𝑖𝑚(𝑛𝑢𝑙𝑙(A)) = 𝑛
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Proof
The rank(A) is the number of pivot columns and dim(null(A)) is the number of non-pivot
columns. The number of pivot columns (rank(A)) + the number of non-pivot columns
(dim(null(A))) are the number of columns.

Example 18.3. in class

A is an 𝑚× 𝑛 matrix with dim(null(A)) = p. What is rank(A)

Example 18.4. A is a 6x9 matrix. Is it possible for null(A) = 2?

Theorem 18.2 (Invertible Matrix Theorm + Rank). This is an extension of the prior state-
ment of the invertible matrix theorem Theorem 9.5 Let A be an 𝑛 × 𝑛 matrix. Then the
following statements are equivalent (i.e., they are all either simultaneously true or false).

13) The columns of A form a basis of ℛ𝑛

14) col(A) = ℛ𝑛

15) dim(col(A)) = 𝑛
16) rank(A) = 𝑛
17) null(A) = {0}
18) dim(null(A)) = 0
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19 Change of basis

• 3 Blue 1 Brown – Change of basis

library(tidyverse)
library(dasc2594)

Consider two bases ℬ = {b1,… ,b𝑛} and 𝒞 = {c1,… , c𝑛} for a vector space 𝒱. If we have a
vector [x]𝐵 with coordinates in ℬ, what are the coordinates of [x]𝐶 with respect to 𝒞?

• Recall: we know how to change from the standard coordinates to the basis ℬ. If x is
a vector in the standard coordinates and B = (b1 … b𝑛) is a matrix with columns
given by the basis B, the coordinates of [x]𝐵 of the vector x with respect to the basis ℬ
are

[x]𝐵 = B−1x

and, as a consequence, given a vector [x]𝐵 with coordinates with respect to the basis ℬ,
the vector of coefficients x with standard coordinates is given by

x = B [x]𝐵 .

Notice that change of coordinates is a linear transformation from ℬ to 𝒞 with transformation
matrix A. Despite the more complex notation, this is just another linear transformation
[link].

Example 19.1. Show the change of basis from the basis ℬ = {(
1
2
1) ,(−1

0 )} to the basis

𝒞 = {(0
1
2
) ,( 1

−1
2
)}. To do this, represent the columns that make up the basis ℬ as the

matrix B = (
1
2 −1
1 0 ) and represent the columns that make up the basis 𝒞 as the matrix

C = (0 1
2

1 −1
2
). Then, the change of basis can be represented as

B <- matrix(c(1/2, 1, -1, 0), 2, 2)
C <- matrix(c(0, 1/2, 1, -1/2), 2, 2)
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p <- plot_change_basis(B, C)

which can be represented with the static images

Basis B Basis C

The change of basis represents a linear transformation. When previously discussing linear
transformations in Chapter 7, we considered a linear transformation from the standard basis

ℐ defined by the basis vectors {(1
0) ,(0

1)} with the vectors represented as the columns of the

identity matrix I. We can consider a change of basis as two consecutive linear transformations.
First, a linear transformation from the basis ℬ to the standard basis ℐ and then a linear
transformation from the standard basis ℐ to the basis 𝒞. This can be represented using the
following example code:

p <- plot_change_basis(B, C, plot_standard_basis = TRUE)
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Basis B Basis I Basis C

Changing coordinates between different bases

Now, we can combine these ideas. Given a vector [x]𝐵 written with coordinates with respect
to the basis ℬ, we can find the coordinates of [x]𝐶 with respect to the basis 𝒞. First, we find
the coordinates of the vector x with respect to the standard basis then find the coordinates
of [x]𝐶 with respect to the basis 𝒞. Let B = (b1 … b𝑛) and C = (c1 … c𝑛), then given
a vector [x]𝐵 with coordinates with respect to the basis ℬ, the coordinates [x]𝐶 of this vector
with respect to the basis 𝒞 is

[x]𝐶 = C−1B [x]𝐵 .

Draw diagram

x ::: {#exm-}

Working with the same bases ℬ = {(
1
2
1) ,(−1

0 )} and 𝒞 = {(0
1
2
) ,( 1

−1
2
)} from the previous

example, Let [x]𝐵 = (−3/2
1/2 ) be the coordinates of the vector x with respect to the basis

ℬ = {(1/2
1 ) ,(−1

0 )}. Find

1) the coordinates of x with respect to the standard basis and
2) the coordinates of x with respect to the basis 𝒞.
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Solution
Here we solve the two questions from the example above.

1) Recall that the coordinates [x]𝐵 of x with respect to the basis ℬ mean that the
vector x can be written as a linear combination of the basis vectors b1 and b2 with

coefficients given by the elements in [x]𝐵 = ([𝑥1]𝐵
[𝑥2]𝐵

). This results in the equation

x = [𝑥1]𝐵 b1 + [𝑥2]𝐵 b2

Plugging the values from the example gives

x = [𝑥1]𝐵 b1 + [𝑥2]𝐵 b2

= −1.5(1/2
1 ) + 0.5(−1

0 )

= (−3/4
−3/2) + (−1/2

0 )

= (−5/4
−3/2)

2) Now, recall the coordinates [x]𝐶 of x with respect to the basis 𝒞 mean that the vector
x can be written as a linear combination of the basis vectors c1 and c2 with coefficients

given by the elements in [x]𝐶 = ([𝑥1]𝐶
[𝑥2]𝐶

). This results in the equation

x = [𝑥1]𝐶 c1 + [𝑥2]𝐶 c2

However, unlike part (1), we do not know the coefficients [x] but need to solve for them.
Rewriting the above equation in the form of Ax = b gives

C [x]𝐶 = x

Because the matrix of basis vectors C is an invertible matrix (a basis is a linearly inde-
pendent spanning set), the coefficients [x]𝐶 can be solved using the equation

C [x]𝐶 = x
C−1C [x]𝐶 = C−1x

[x]𝐶 = C−1x

The matrix inverse C−1 can be found using Theorem 9.1 to get C−1 = (1 2
1 0). Then,

plugging in the values from the example gives
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[x]𝐶 = C−1x

= (1 2
1 0)(−5/4

−3/2)

= (−17/4
−5/4 )

Another way to change coordinates is to change directly from basis ℬ to 𝒞 without going
through the intermediate transformation to the standard coordinates. Combining the
results from (1) and (2) gives

[x]𝐶 = C−1x
= C−1B [x]𝐵

so that one can change coordinates from the basis ℬ to the basis 𝒞 using the linear
transformation defined by the matrix multiplication C−1B.
In R, first define the basis matrices B and C and the coordinates x_b of the vector x with
respect to the basis ℬ.

B <- matrix(c(1/2, 1, -1, 0), 2, 2)
C <- matrix(c(0, 1/2, 1, -1/2), 2, 2)
x_b <- c(-3/2, 1/2)

1) The coordinates x with respect to the standard basis is

x <- B %*% x_b
x

[,1]
[1,] -1.25
[2,] -1.50

2) The coordinates x_c with respect to the basis 𝒞 can be found by calculating the matrix
inverse C_inv and then using the matrix inverse to calculate the coordinates with respect
to the basis 𝒞 as

C_inv <- solve(C)
x_c <- C_inv %*% x
x_c

[,1]
[1,] -4.25
[2,] -1.25
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Done as a single transformation, the linear transformation is defined as

B %*% C_inv

[,1] [,2]
[1,] -0.5 1
[2,] 1.0 2

which gives the coordinates

B %*% C_inv %*% x_b

[,1]
[1,] 1.25
[2,] -0.50

Example 19.2. 3-d change of basis
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20 Eigenvectors and Eigenvalues

• 3 Blue 1 Brown – Eigenvalues

library(tidyverse)
library(dasc2594)
set.seed(2021)

We have just learned about change of basis in an abstract sense. Now, we will learn about
a special change of basis that is “data-driven” called an eigenvector. Eigenvectors and the
corresponding eigenvalues are a vital tool in data science for data compression and modeling.

Definition 20.1. An eigenvector of an 𝑛 × 𝑛 matrix A is a nonzero vector x such that the
matrix equation

Ax = 𝜆x

for some scalar 𝜆. If there exists some 𝜆 ≠ 0 (a non-trivial solutions), then 𝜆 is called an
eigenvalue of A corresponding to the eigenvector x.

It is easy to check if a vector is an eigenvalue:

Let A = ⎛⎜
⎝

0 6 8
1/2 0 0
0 1/2 0

⎞⎟
⎠
, u = ⎛⎜

⎝

16
4
1
⎞⎟
⎠
, and v = ⎛⎜

⎝

2
2
2
⎞⎟
⎠
. Determine if u or v are eigenvectors of

A. If they are eigenvectors, what are the associated eigenvalues.

Solution
Here we demonstrate the eigenvector/eigenvalue relationship.

a) If u is an eigenvector of a matrix A, then there exists some constant 𝜆 such that
Au = 𝜆u. Checking this gives
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Au = ⎛⎜
⎝

0 6 8
1/2 0 0
0 1/2 0

⎞⎟
⎠

⎛⎜
⎝

16
4
1
⎞⎟
⎠

= ⎛⎜
⎝

32
8
2
⎞⎟
⎠

= 2⎛⎜
⎝

16
4
1
⎞⎟
⎠

which shows that u is an eigenvector of A with associated eigenvalue 𝜆 = 2. Now, we
check if v is an eigenvector of A

Av = ⎛⎜
⎝

0 6 8
1/2 0 0
0 1/2 0

⎞⎟
⎠

⎛⎜
⎝

2
2
2
⎞⎟
⎠

= ⎛⎜
⎝

28
1
1
⎞⎟
⎠

where there is no number 𝜆 such that ⎛⎜
⎝

28
1
1
⎞⎟
⎠

= 𝜆⎛⎜
⎝

2
2
2
⎞⎟
⎠
. In R, this can be shown

A <- matrix(c(0, 1/2, 0, 6, 0, 1/2, 8, 0, 0), 3, 3)
A

[,1] [,2] [,3]
[1,] 0.0 6.0 8
[2,] 0.5 0.0 0
[3,] 0.0 0.5 0

u <- c(16, 4, 1)
v <- c(2, 2, 2)
# is u an eigenvector of A?
A %*% u

[,1]
[1,] 32
[2,] 8
[3,] 2
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# yes, because A %*% u = 2 u
# 2 is the eigenvalue associated with u

# is v an eigenvector of A?
A %*% v

[,1]
[1,] 28
[2,] 1
[3,] 1

# not an eigenvectos because A %*% v is not equal to lambda * v for some lambda

Example 20.1. It is easy to check if a vector is an eigenvalue:

Let A = (2 1
0 1), u = (−

√
2
2√
2
2

), and v = (1
1). Determine if u or v are eigenvectors of A. If

they are eigenvectors, what are the associated eigenvalues. Now, plot u, Au, v, and Av to
show this relationship geometrically.

Solution
First, we determine if the vectors u and v are eigenvectors of A.
If u is an eigenvector of a matrix A, then there exists some constant 𝜆 such that Au = 𝜆u.
Checking this gives

Au = (2 1
0 1)(−

√
2
2√
2
2

)

= (−
√
2
2√
2
2

)

which shows that u is an eigenvector of A with associated eigenvalue 𝜆 = 1. Now, we
check if v is an eigenvector of A

Av = (2 1
0 1)(1

1)

= (3
1)
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where there is no number 𝜆 such that (3
1) = 𝜆(1

1). In R, this can be shown

A <- matrix(c(2, 0, 1, 1), 2, 2)
u <- c(-sqrt(2)/2, sqrt(2) / 2)
v <- c(1, 1)

# is u an eigenvector of A?
A %*% u

[,1]
[1,] -0.7071068
[2,] 0.7071068

# yes, because A %*% u = u
# 1 is the eigenvalue associated with u

# is v an eigenvector of A?
A %*% v

[,1]
[1,] 3
[2,] 1

# not an eigenvectos because A %*% v is not equal to lambda * v for some lambda

Now, we will plot the vectors u and v as well as the vectors transformed by the matrix A
(i.e., Au and Av). The code below plot the vector u in dark blue and the transformed
vector Au in light blue. The code also plots the vector v in dark red and the transformed
vector Av in light red.

ggplot() +
geom_segment(aes(x = 0, xend = u[1], y = 0, yend = u[2]), color = "dark blue") +
geom_segment(aes(x = 0, xend = (A %*% u)[1], y = 0, yend = (A %*% u)[2]), color = "light blue", lty = 2) +
geom_segment(aes(x = 0, xend = v[1], y = 0, yend = v[2]), color = "dark red") +
geom_segment(aes(x = 0, xend = (A %*% v)[1], y = 0, yend = (A %*% v)[2]), color = "red") +
coord_cartesian(xlim = c(-5, 5), ylim = c(-5, 5))
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Notice that the multiplication of u by A gives a vector Au that points along the same line
as u because u is an eigenvector of A. In comparison, the vector v is not an eigenvector
of A and multiplication of v by A gives a vector Av that does not point along the same
line as the vector u.

Example 20.2. Come up with another example and another plot that shows the similar result
as the example above.

Solution
The solution (TBD)

Thus, we end up with the understanding that nn eigenvector is a (nonzero) vector x that gets
mapped to a scalar multiple of itself 𝜆x by the matrix transformation defined by 𝑇 ∶ x →
Ax = x. As such, when x is an eigenvector of A we say that x and Ax are collinear with the
origin (0) and each other in the sense that these points lie on the same line that goes through
the origin.

Note: The matrix A must be an 𝑛 × 𝑛 square matrix. A similar decomposition (called the
singular value decomposition) can be used for rectangular matrices.
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Example 20.3. Example: reflection Draw images: https://textbooks.math.gatech.edu/ila/
eigenvectors.html

Theorem 20.1 (The Distinct Eigenvalues Theorem). Let v1,… ,v𝑛 be eigenvectors of a matrix
A and suppose the corresponding eigenvalues are 𝜆1, 𝜆2,… , 𝜆𝑛 are all distinct (different values).
Then, the set of vectors {v1,… ,v𝑛} is linearly independent.

Proof
Suppose the set {v1,… ,v𝑛} is linearly dependent. Then, there is some 𝑗 such that
v𝑗 = ∑𝑗−1

𝑘=1 𝑥𝑘v𝑘. If we choose the first linearly dependent vector as 𝑗, we know that the
subset of vectors {v1,… ,v𝑗−1} is linearly independent and

v𝑗 = 𝑥1v1 +⋯𝑥𝑗−1 + v𝑗−1

for some scalars 𝑥1,… , 𝑥𝑗−1. Multiplying the equation above on the left by A on both
sides gives

Av𝑗 = A(𝑥1v1 +⋯+ 𝑥𝑗−1v𝑗−1)
𝜆𝑗v𝑗 = 𝑥1Av1 +⋯+ 𝑥𝑗−1Av𝑗−1

= 𝑥1𝜆1v1 +⋯𝑥𝑗−1𝜆𝑗−1 + v𝑗−1

Multiplying the first equation by 𝜆𝑗 and subtracting this from the second equation gives

0 = 𝜆𝑗v𝑗 − 𝜆𝑗v𝑗 = 𝑥1(𝜆1 − 𝜆𝑗)v1 +⋯𝑥𝑗−1 + (𝜆𝑗−1 − 𝜆𝑗)v𝑗−1

Because 𝜆𝑘 ≠ 𝜆𝑗 for all 𝑘 < 𝑗, the equation above implies a linear dependence among
the set of vectors {v1,… ,v𝑗−1} which is a contradiction. Therefore, our assumption that
there exists a linearly dependent vector v𝑗 is violated and all the {v1,… ,v𝑛} are linearly
independent.

20.1 Eigenspaces

Given a square 𝑛 × 𝑛 matrix A, we know how to check if a given vector x is an eigenvector
and then how to find the eigenvalue associated with that eigenvector. Next, we want to check
if a given number is an eigenvalue of A and to find all the eigenvectors corresponding to that
eigenvalue.

Given a square 𝑛 × 𝑛 matrix A and a scalar 𝜆, the eigenvectors of A associated with the
scalar 𝜆 (if there are eigenvectors associated with 𝜆) are the nonzero solutoins to the equation
Ax = 𝜆x. This can be written as
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Ax = 𝜆x
Ax − 𝜆x = 0

Ax − 𝜆Ix = 0
(A − 𝜆I)x = 0.

Therefore, the eigenvectors of A associated with 𝜆, if there are any, are the nontrivial solutions
of the homogeneous matrix equation (A − 𝜆I)x = 0. In other words, the eigenvectors are the
nonzero vectors in the null space null(A − 𝜆I). If there is not a nontrivial solution (solution
x ≠ 0), then 𝜆 is not an eigenvalue of A.

Hey, we know how to find solutions to homogeneous systems of equations! Thus, we know
how to find the eigenvectors of A. All we have to do is solve the system of linear equations
(A − 𝜆I)x = 0 for a given 𝜆 (actually, for all 𝜆s, which we can’t do). If only there was some
way to find eigenvalues 𝜆 (hint: there is and it is coming next chapter).

Example 20.4.

Let A = ⎛⎜
⎝

3 6 −8
0 0 6
0 0 2

⎞⎟
⎠
. Then an eigenvector with eigenvector 𝜆 is a nontrival solution to

(A − 𝜆I)x = 0

which can be written as

⎛⎜
⎝

3 − 𝜆 6 −8
0 0 − 𝜆 6
0 0 2 − 𝜆

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which can be solved for a given 𝜆 using an augmented matrix form and row operations to
reduce to reduced row echelon form.

Letting 𝜆 = 3, we have

⎛⎜
⎝

3 − 3 6 −8
0 0 − 3 6
0 0 2 − 3

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which can be written as the matrix equation
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⎛⎜
⎝

0 6 −8
0 −3 6
0 0 −1

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

Note that the columns of the matrix above are not linearly independent. Thus, we can solve a
non-unique solution (the solution set is a line going through the origin) by finding the reduce
row echelon form of an augmented matrix

⎛⎜
⎝

0 6 −8 0
0 −3 6 0
0 0 −1 0

⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟
⎠

which has solution

𝑥1 = 𝑥1
𝑥2 = 0
𝑥3 = 0

Fixing 𝑥1 = 1 gives the eigenvector associated with 𝜆 = 3 of ⎛⎜
⎝

1
0
0
⎞⎟
⎠
. We can verify that this is

an eigenvector with matrix multiplication

⎛⎜
⎝

3 6 −8
0 0 6
0 0 2

⎞⎟
⎠

⎛⎜
⎝

1
0
0
⎞⎟
⎠

= ⎛⎜
⎝

3
0
0
⎞⎟
⎠

= 3⎛⎜
⎝

1
0
0
⎞⎟
⎠

Using R, this can be done as

lambda <- 3
# apply rref to the augmented matrix
rref(cbind(A - lambda * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 0 1 0 0
[2,] 0 0 1 0
[3,] 0 0 0 0

where the solution set is determined from the RREF form of the augmented matrix of the
equation (A − 𝜆I)x = 0
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Example 20.5.

Let A = ⎛⎜
⎝

−21/5 −34/5 18/5
−6/5 −14/5 3/5
−4 −10 5

⎞⎟
⎠
. Find the eigenvectors associated with the eigenvalues (a)

𝜆1 = −4, (b) 𝜆2 = 3, and (c) 𝜆3 = −1.

Solution

Given the matrix A = ⎛⎜
⎝

−21/5 −34/5 18/5
−6/5 −14/5 3/5
−4 −10 5

⎞⎟
⎠
, we can find the eigenvectors associated

with the given eigenvalues

a) The eigenvalues associated with the first eigenvector 𝜆1 = −4 by solving

(A − 𝜆1I)x = 0

which can be written as

⎛⎜
⎝

−21/5 − 𝜆1 −34/5 18/5
−6/5 −14/5 − 𝜆1 3/5
−4 −10 5 − 𝜆1

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

and can be solved for 𝜆1 using an augmented matrix form and row operations to reduce
to reduced row echelon form.
Letting 𝜆1 = −4, we have

⎛⎜
⎝

−21/5 − −4 −34/5 18/5
−6/5 −14/5 − −4 3/5
−4 −10 5 − −4

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which results in the augmented matrix

⎛⎜
⎝

−1/5 −34/5 18/5 0
−6/5 6/5 3/5 0
−4 −10 9 0

⎞⎟
⎠

Reducing the augmented matrix to reduced row echelon form gives

⎛⎜
⎝

−1/5 −34/5 18/5 0
−6/5 6/5 3/5 0
−4 −10 9 0

⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

1 0 −1 0
0 1 −1/2 0
0 0 0 0

⎞⎟
⎠

which has solution
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𝑥1 − 𝑥3 = 0

𝑥2 −
1
2𝑥3 = 0
𝑥3 = 𝑥3

Fixing 𝑥3 = 1 gives the eigenvector associated with 𝜆1 = −4 of x1 = ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠
. We can

verify that this is an eigenvector with matrix multiplication to show Ax1 = 𝜆1x1

⎛⎜
⎝

−21/5 −34/5 18/5
−6/5 −14/5 3/5
−4 −10 5

⎞⎟
⎠

⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

= ⎛⎜
⎝

−4
−2
−4

⎞⎟
⎠

= −4⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

Using R, this is

A <- matrix(c(-21/5, -6/5, -4, -34/5, -14/5, -10, 18/5, 3/5, 5), 3, 3)
lambda_1 <- -4
rref(cbind(A - lambda_1 * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 1 0 -1.0 0
[2,] 0 1 -0.5 0
[3,] 0 0 0.0 0

Verifying that the eigenvalue x1 = ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

is an eigenvector is

x_1 <- c(1, 1/2, 1)
all.equal(drop(A %*% x_1), lambda_1 * x_1) # drop() makes a matrix with one column a vector

[1] TRUE

b) The eigenvalues associated with the second eigenvector 𝜆2 = 3 by solving

(A − 𝜆2I)x = 0
which can be written as

⎛⎜
⎝

−21/5 − 𝜆2 −34/5 18/5
−6/5 −14/5 − 𝜆2 3/5
−4 −10 5 − 𝜆2

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0
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and can be solved for 𝜆2 using an augmented matrix form and row operations to reduce
to reduced row echelon form.
Letting 𝜆2 = 3, we have

⎛⎜
⎝

−21/5 − 3 −34/5 18/5
−6/5 −14/5 − 3 3/5
−4 −10 5 − 3

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which results in the augmented matrix

⎛⎜
⎝

−36/5 −34/5 18/5 0
−6/5 −29/5 3/5 0
−4 −10 2 0

⎞⎟
⎠

Reducing the augmented matrix to reduced row echelon form gives

⎛⎜
⎝

−36/5 −34/5 18/5 0
−6/5 −29/5 3/5 0
−4 −10 2 0

⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

1 0 −1/2 0
0 1 0 0
0 0 0 0

⎞⎟
⎠

which has solution

𝑥1 −
1
2𝑥3 = 0
𝑥2 = 0
𝑥3 = 𝑥3

Fixing 𝑥3 = 1 gives the eigenvector associated with 𝜆2 = 3 of x2 = ⎛⎜
⎝

1/2
0
1

⎞⎟
⎠
. We can

verify that this is an eigenvector with matrix multiplication to show Ax2 = 𝜆2x2

⎛⎜
⎝

−21/5 −34/5 18/5
−6/5 −14/5 3/5
−4 −10 5

⎞⎟
⎠

⎛⎜
⎝

1/2
0
1

⎞⎟
⎠

= ⎛⎜
⎝

3/2
0
3

⎞⎟
⎠

= 3⎛⎜
⎝

1/2
0
1

⎞⎟
⎠

Using R, this is

A <- matrix(c(-21/5, -6/5, -4, -34/5, -14/5, -10, 18/5, 3/5, 5), 3, 3)
lambda_2 <- 3
rref(cbind(A - lambda_2 * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 1 0 -0.5 0
[2,] 0 1 0.0 0
[3,] 0 0 0.0 0
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Verifying that the eigenvalue x1 = ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

is an eigenvector is

x_2 <- c(1/2, 0, 1)
all.equal(drop(A %*% x_2), lambda_2 * x_2) # drop() makes a matrix with one column a vector

[1] TRUE

c) The eigenvalues associated with the third eigenvector 𝜆3 = −1 by solving

(A − 𝜆3I)x = 0

which can be written as

⎛⎜
⎝

−21/5 − 𝜆3 −34/5 18/5
−6/5 −14/5 − 𝜆3 3/5
−4 −10 5 − 𝜆3

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

and can be solved for 𝜆3 using an augmented matrix form and row operations to reduce
to reduced row echelon form.
Letting 𝜆3 = −1, we have

⎛⎜
⎝

−21/5 − −1 −34/5 18/5
−6/5 −14/5 − −1 3/5
−4 −10 5 − −1

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which results in the augmented matrix

⎛⎜
⎝

−16/5 −34/5 18/5 0
−6/5 −9/5 3/5 0
−4 −10 6 0

⎞⎟
⎠

Reducing the augmented matrix to reduced row echelon form gives

⎛⎜
⎝

−16/5 −34/5 18/5 0
−6/5 −9/5 3/5 0
−4 −10 6 0

⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

1 0 1 0
0 1 −1 0
0 0 0 0

⎞⎟
⎠

which has solution

𝑥1 + 𝑥3 = 0
𝑥2 − 𝑥3 = 0

𝑥3 = 𝑥3
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Fixing 𝑥3 = 1 gives the eigenvector associated with 𝜆3 = −1 of x3 = ⎛⎜
⎝

−1
1
1
⎞⎟
⎠
. We can

verify that this is an eigenvector with matrix multiplication to show Ax2 = 𝜆2x2

⎛⎜
⎝

−21/5 −34/5 18/5
−6/5 −14/5 3/5
−4 −10 5

⎞⎟
⎠

⎛⎜
⎝

−1
1
1
⎞⎟
⎠

= ⎛⎜
⎝

1
−1
−1

⎞⎟
⎠

= −1⎛⎜
⎝

−1
1
1
⎞⎟
⎠

Using R, this is

A <- matrix(c(-21/5, -6/5, -4, -34/5, -14/5, -10, 18/5, 3/5, 5), 3, 3)
lambda_3 <- -1
rref(cbind(A - lambda_3 * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 1 0 1 0
[2,] 0 1 -1 0
[3,] 0 0 0 0

Verifying that the eigenvalue x1 = ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

is an eigenvector is

x_3 <- c(-1, 1, 1)
all.equal(drop(A %*% x_3), lambda_3 * x_3) # drop() makes a matrix with one column a vector

[1] TRUE

Now, let’s compare the output of the eigen() function in R to these eigenvectors cal-
culated “by hand.” The eigen() function returns the two objects named $values that
contain the eigenvalues of A and the object $vectors that contains a matrix of eigenvec-
tors as the columns fo the matrix. Each eigenvalue corresponds to the respective column
of the eigenvector matrix.

eigen(A)

eigen() decomposition
$values
[1] -4 3 -1

$vectors
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[,1] [,2] [,3]
[1,] 0.6666667 -4.472136e-01 -0.5773503
[2,] 0.3333333 -3.041122e-16 0.5773503
[3,] 0.6666667 -8.944272e-01 0.5773503

Note that the eigenvectors returned by the eigen() function are the same as those in
the example, but the vectors are different. However, the vectors from eigen() point in
the same direction as those found “by hand” and only differ in the length of the vector.

For example, we found the eigenvector associated with the eigenvalue -4 to be ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

which points in the same direction as the vector from eigen() of ⎛⎜
⎝

2/3
1/3
2/3

⎞⎟
⎠

which is just

a scalar multiple of the vector found “by hand.” Recall that when we found a solution
using RREF and the augmented matrix, the solution set was infinite (a line) and we just
set the free variable equal to 1. Another equally valid solution would be to set the free
variable so that the total length of the vector is 1, and this is what the eigen() function
does.

Definition 20.2. Let A be an 𝑛 × 𝑛 matrix and let 𝜆 be an eigenvalue of A. Then, the
𝜆-eigenspace of A is the solution set of the matrix equation (A − 𝜆I)x = 0 which is the
subspace null(A − 𝜆I).

Therefore, the 𝜆-eigenspace is a subspace (the null space of any matrix is a subspace) that
contains the zero vector 0 and all the eigenvectors of A with corresponding eigenvalue 𝜆.

Example 20.6.

For 𝜆 = (a) -2, (b) 1, and (c) 3, decide if 𝜆 is a eigenvalue of the matrix A = ( 3 0
−3 2) and if

so, compute a basis for the 𝜆-eigenspace.

Solution
Given the matrix A defined in the example, we will check if any of the values of 𝜆 are
eigenvalues.

A <- matrix(c(3, -3, 0, 2), 2, 2)
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a) First, we check if 𝜆 = −2 is an eigenvalue of A. If 𝜆 = −2 is an eigenvalue of A,
then there is a non-trivial solution to

(A − 𝜆I)x = 0

The homogeneous system of equations can be written as

(3 − 𝜆 0
−3 2 − 𝜆)(𝑥1

𝑥2
) = 0

and can be solved for 𝜆 = −2 using an augmented matrix form and row operations to
reduce to reduced row echelon form where

(3 − −2 0
−3 2 − −2)(𝑥1

𝑥2
) = 0

which results in the augmented matrix

( 5 0 0
−3 4 0)

Reducing the augmented matrix to reduced row echelon form gives

( 5 0 0
−3 4 0)

𝑟𝑟𝑒𝑓∼ (1 0 0
0 1 0)

which has solution

𝑥1 = 0
𝑥2 = 0

which is the trivial solution. Thus, 𝜆 = −2 is not an eigenvalue of A.
Using R, this is

A <- matrix(c(3, -3, 0, 2), 2, 2)
lambda <- -2
rref(cbind(A - lambda * diag(nrow(A)), 0))

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0

Because there is only the trivial solution x = 0, 𝜆 = −2 is not an eigenvalue of A.

lambda <- 1
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b) Next, we check if 𝜆 = 1 is an eigenvalue of A. If 𝜆 = 1 is an eigenvalue of A, then
there is a non-trivial solution to

(A − 𝜆I)x = 0

The homogeneous system of equations can be written as

(3 − 𝜆 0
−3 2 − 𝜆)(𝑥1

𝑥2
) = 0

and can be solved for 𝜆 = 1 using an augmented matrix form and row operations to
reduce to reduced row echelon form where

(3 − 1 0
−3 2 − 1)(𝑥1

𝑥2
) = 0

which results in the augmented matrix

( 2 0 0
−3 1 0)

Reducing the augmented matrix to reduced row echelon form gives

( 2 0 0
−3 1 0)

𝑟𝑟𝑒𝑓∼ (1 0 0
0 1 0)

which has solution

𝑥1 = 0
𝑥2 = 0

which is the trivial solution. Thus, 𝜆 = 1 is not an eigenvalue of A.

Fixing 𝑥3 = 1 gives the eigenvector associated with 𝜆3 = 𝑁𝐴 of x3 = ⎛⎜
⎝

−1
1
1
⎞⎟
⎠
. We can

verify that this is an eigenvector with matrix multiplication to show Ax2 = 𝜆2x2

( 3 0
−3 2)(−1

1 ) = (−3
5 ) = 1(−1

1 )

Using R, this is

A <- matrix(c(3, -3, 0, 2), 2, 2)
lambda <- 1
rref(cbind(A - lambda * diag(nrow(A)), 0))

209



[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0

Because there is only the trivial solution x = 0, 𝜆 = 1 is not an eigenvalue of A.

lambda <- 3

c) Next, we check if 𝜆 = 3 is an eigenvalue of A. If 𝜆 = 3 is an eigenvalue of A, then
there is a non-trivial solution to

(A − 𝜆I)x = 0

The homogeneous system of equations can be written as

(3 − 𝜆 0
−3 2 − 𝜆)(𝑥1

𝑥2
) = 0

and can be solved for 𝜆 = 3 using an augmented matrix form and row operations to
reduce to reduced row echelon form where

(3 − 3 0
−3 2 − 3)(𝑥1

𝑥2
) = 0

which results in the augmented matrix

( 0 0 0
−3 −1 0)

Reducing the augmented matrix to reduced row echelon form gives

( 0 0 0
−3 −1 0)

𝑟𝑟𝑒𝑓∼ (1 1/3 0
0 0 0)

which has solution

𝑥1 +
1
3𝑥2 = 0
𝑥2 = 𝑥2

where the solution can be chosen by setting 𝑥2 = 1 giving the eigenvector associated

with 𝜆 = 3 of x = (−1/3
1 ). We can verify that this is an eigenvector with matrix

multiplication to show Ax = 𝜆x
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( 3 0
−3 2)(−1/3

1 ) = (−1
3 ) = 3(−1/3

1 )

Using R, this is

A <- matrix(c(3, -3, 0, 2), 2, 2)
lambda <- 3
rref(cbind(A - lambda * diag(nrow(A)), 0))

[,1] [,2] [,3]
[1,] 1 0.3333333 0
[2,] 0 0.0000000 0

Verifying that the eigenvalue x = (−1/3
1 ) is an eigenvector is

x <- c(-1/3, 1)
all.equal(drop(A %*% x), lambda * x) # drop() makes a matrix with one column a vector

[1] TRUE

Now, because we know that 𝜆 = 3 is an eigenvalue of A and the homogeneous system

of equations (A − 𝜆I)x = 0 has a unique solution, the vector (−1/3
1 ) forms a basis for

the 3-eigenspace of A.

Example 20.7.

Let A = ⎛⎜
⎝

17/5 8/5 −6/5
0 3 0

4/5 16/5 3/5
⎞⎟
⎠
. Find the eigenvectors associated with the eigenvalues (a)

𝜆 = 3 and (b) 𝜆 = 1. For each eigen value, also find the basis for the associated eigen-space.

Solution

Given the matrix A = ⎛⎜
⎝

17/5 8/5 −6/5
0 3 0

4/5 16/5 3/5
⎞⎟
⎠
, we can find the eigenvectors associated

with the given eigenvalues

a) The eigenvalues associated with the first eigenvector 𝜆 = 3 by solving
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(A − 𝜆I)x = 0

which can be written as

⎛⎜
⎝

17/5 − 𝜆 8/5 −6/5
0 3 − 𝜆 0

4/5 16/5 3/5 − 𝜆
⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

and can be solved for 𝜆 using an augmented matrix form and row operations to reduce
to reduced row echelon form.
Letting 𝜆 = 3, we have

⎛⎜
⎝

17/5 − 3 8/5 −6/5
0 3 − 3 0

4/5 16/5 3/5 − 3
⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which results in the augmented matrix

⎛⎜
⎝

2/5 8/5 −6/5 0
0 0 0 0

4/5 16/5 −12/5 0
⎞⎟
⎠

Reducing the augmented matrix to reduced row echelon form gives

⎛⎜
⎝

2/5 8/5 −6/5 0
0 0 0 0

4/5 16/5 −12/5 0
⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

1 4 −3 0
0 0 0 0
0 0 0 0

⎞⎟
⎠

which has solution

𝑥1 + 4𝑥2 − 𝑥33 = 0
𝑥2 = 𝑥2
𝑥3 = 𝑥3

Where there are two free variables which suggests that the dimension of the solution
space is 2 (the solution set defines a plane and will have 2 basis vectors. Fixing 𝑥2 = 1

and 𝑥3 = 0 gives the first eigenvector associated with 𝜆 = 3 of x1 = ⎛⎜
⎝

−4
1
0
⎞⎟
⎠
. We can

verify that this is an eigenvector with matrix multiplication to show Ax1 = 𝜆x1

⎛⎜
⎝

17/5 8/5 −6/5
0 3 0

4/5 16/5 3/5
⎞⎟
⎠

⎛⎜
⎝

−4
1
0
⎞⎟
⎠

= ⎛⎜
⎝

−12
3
0

⎞⎟
⎠

= 3⎛⎜
⎝

−4
1
0
⎞⎟
⎠
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The second basis vector for the eigenspace associated with 𝜆 = 3 can be found by fixing

𝑥2 = 0 and 𝑥3 = 1 to get the eigenvector x2 = ⎛⎜
⎝

3
0
1
⎞⎟
⎠
. We can verify that this is an

eigenvector with matrix multiplication to show Ax2 = 𝜆x2

⎛⎜
⎝

17/5 8/5 −6/5
0 3 0

4/5 16/5 3/5
⎞⎟
⎠

⎛⎜
⎝

3
0
1
⎞⎟
⎠

= ⎛⎜
⎝

9
0
3
⎞⎟
⎠

= 3⎛⎜
⎝

3
0
1
⎞⎟
⎠

Thus, the basis for 3-eigenspace is
⎧{
⎨{⎩
⎛⎜
⎝

−4
1
0
⎞⎟
⎠

,⎛⎜
⎝

3
0
1
⎞⎟
⎠

⎫}
⎬}⎭
. Note that this is the same as finding

a basis for the null space of (A − 𝜆I).
Using R, this is

A <- matrix(c(17/5, 0, 4/5, 8/5, 3, 16/5, -6/5, 0, 3/5), 3, 3)
lambda <- 3
rref(cbind(A - lambda * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 1 4 -3 0
[2,] 0 0 0 0
[3,] 0 0 0 0

Verifying that the eigenvalue x1 = ⎛⎜
⎝

−4
1
0
⎞⎟
⎠

is an eigenvector and that x2 = ⎛⎜
⎝

3
0
1
⎞⎟
⎠

is an

eigenvector

x_1 <- c(-4, 1, 0)
all.equal(drop(A %*% x_1), lambda * x_1) # drop() makes a matrix with one column a vector

[1] TRUE

x_2 <- c(3, 0, 1)
all.equal(drop(A %*% x_2), lambda * x_2) # drop() makes a matrix with one column a vector

[1] TRUE

lambda <- 1
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b) The eigenvalues associated with the second eigenvector 𝜆 = 1 by solving

(A − 𝜆I)x = 0
which can be written as

⎛⎜
⎝

17/5 − 𝜆 8/5 −6/5
0 3 − 𝜆 0

4/5 16/5 3/5 − 𝜆
⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

and can be solved for 𝜆 using an augmented matrix form and row operations to reduce
to reduced row echelon form.
Letting 𝜆 = 1, we have

⎛⎜
⎝

17/5 − 1 8/5 −6/5
0 3 − 1 0

4/5 16/5 3/5 − 1
⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

= 0

which results in the augmented matrix

⎛⎜
⎝

12/5 8/5 −6/5 0
0 2 0 0

4/5 16/5 −2/5 0
⎞⎟
⎠

Reducing the augmented matrix to reduced row echelon form gives

⎛⎜
⎝

12/5 8/5 −6/5 0
0 2 0 0

4/5 16/5 −2/5 0
⎞⎟
⎠

𝑟𝑟𝑒𝑓∼ ⎛⎜
⎝

1 0 −1/2 0
0 1 0 0
0 0 0 0

⎞⎟
⎠

which has solution

𝑥1 −
1
2𝑥3 = 0
𝑥2 = 0
𝑥3 = 𝑥3

Fixing 𝑥3 = 1 gives the eigenvector associated with 𝜆 = 1 of x = ⎛⎜
⎝

1/2
0
1

⎞⎟
⎠
. We can verify

that this is an eigenvector associated with eigenvalue 𝜆 = 1 with matrix multiplication
to show Ax = 𝜆x

⎛⎜
⎝

17/5 8/5 −6/5
0 3 0

4/5 16/5 3/5
⎞⎟
⎠

⎛⎜
⎝

1/2
0
1

⎞⎟
⎠

= ⎛⎜
⎝

1/2
0
1

⎞⎟
⎠

= 𝑁𝐴⎛⎜
⎝

1/2
0
1

⎞⎟
⎠
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Therefore, a basis for the 1-eigenspace is
⎧{
⎨{⎩
⎛⎜
⎝

1/2
0
1

⎞⎟
⎠

⎫}
⎬}⎭

Using R, this is

A <- matrix(c(17/5, 0, 4/5, 8/5, 3, 16/5, -6/5, 0, 3/5), 3, 3)
lambda <- 1
rref(cbind(A - lambda * diag(nrow(A)), 0))

[,1] [,2] [,3] [,4]
[1,] 1 0 -0.5 0
[2,] 0 1 0.0 0
[3,] 0 0 0.0 0

Verifying that the eigenvalue x = ⎛⎜
⎝

1
1/2
1

⎞⎟
⎠

is an eigenvector associated with eigenvalue

𝜆 = 1 is

x <- c(1/2, 0, 1)
all.equal(drop(A %*% x), lambda * x) # drop() makes a matrix with one column a vector

[1] TRUE

20.1.1 Computing Eigenspaces

Let A be a 𝑛 × 𝑛 matrix and let 𝜆 be a scalar.

1) 𝜆 is an eigenvalue of A if and only if (A−𝜆I)x = 0 has a non-trivial solution. The matrix
equation (A − 𝜆I)x = 0 has a non-trivial solution if and only if null(A − 𝜆I) ≠ {0}

2) Finding a basis for the 𝜆-eigenspace of A is equivalent to finding a basis for null(A−𝜆I)
which can be done by finding parametric forms of the solutions of the homogeneous
system of equations (A − 𝜆I)x = 0.

3) The dimension of the 𝜆-eigenspace of A is equal to the number of free variables in the
system of equations (A−𝜆I)x = 0 which is the number of non-pivot columns of A−𝜆I.

4) The eigenvectors with eigenvalue 𝜆 are the nonzero vectors in null(A − 𝜆I) which are
equivalent to the nontrivial solutions of (A − 𝜆I)x = 0.

Note that this leads of a fact about the 0-eigenspace.
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Definition 20.3. Let A be an 𝑛 × 𝑛 matrix. Then

1) The number 0 is an eigenvalue of A if and only if A is not invertible.

2) If 0 is an eigenvalue of A, then the 0-eigenspace of A is null(A).

Proof
0 is an eigenvalue of A if and only if null(A − 0I) = null(A). By the invertible matrix
theorem, A is invertible if and only if null(A) = {0} but we know that the 0-eigenspace
of A is not the trivial set {0} because 0 is an eigenvalue.

Theorem 20.2 (Invertible Matrix Theorm + eigenspaces). This is an extension of the prior
statement of the invertible matrix Theorem 9.5 Let A be an 𝑛×𝑛 matrix and 𝑇 ∶ ℛ𝑛 → ℛ𝑛 be
the linear transformation given by 𝑇 (x) = Ax. Then the following statements are equivalent
(i.e., they are all either simultaneously true or false).

1) A is invertible.

2) A has n pivot columns.

3) null(A) = {0}.

4) The columns of A are linearly independent.

5) The columns of A span ℛ𝑛.

6) The matrix equation Ax = b has a uniqu solution for each b ∈ ℛ𝑛.

7) The transormation 𝑇 is invertible.

8) The transormation 𝑇 is one-to-one.

9) The transormation 𝑇 is onto.

10) det(A) ≠ 0
11) 0 is not an eigenvalue of A
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21 The Characteristic Equation

• 3 Blue 1 Brown –

library(tidyverse)
library(dasc2594)

The characteristic equation/polynomial encodes information about the eigenvalues of the char-
acteristic equation. In the previous chapter, we showed how we can decide if a scalar 𝜆 is an
eigenvalue of a matrix and how to find the vectors associated with the eigenvalue. However, we
did not learn how to find eigenvalues (other than to just randomly try 𝜆). The characteristic
equation/polynomial allows for determining the eigenvalues 𝜆.

Definition 21.1. Let A be a 𝑛 × 𝑛 matrix. The characteristic equation/polynomial of A is
the function 𝑓(𝜆) given by

𝑓(𝜆) = 𝑑𝑒𝑡(A − 𝜆I)

While not obvious, the function 𝑓(𝜆) is a polynomial of 𝜆 but requires computing the deter-
minant of the matrix A − 𝜆I which contains an unknown value 𝜆.

Example 21.1. Find the characteristic equation of the matrix A = (3 5
2 −1)

• do in class

Example 21.2. Find the characteristic equation of the matrix A = ⎛⎜
⎝

0 6 8
1
2 0 0
0 1

2 0
⎞⎟
⎠

• do in class (expand cofactors along the third column)
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Once the characteristic equation is defined, we can use the equation to solve for the eigenval-
ues.

Theorem 21.1. Let A be a 𝑛 × 𝑛 matrix and let 𝑓(𝜆) = 𝑑𝑒𝑡(A − 𝜆I) be a characteristic
polynomial. Then, the number 𝜆0 is an eigenvalue of A if and only if 𝑓(𝜆0) = 0.

Proof
By the invertible matrix theorem, the matrix (A−𝜆0I)x = 0 has a nontrivial solution if
and only if 𝑑𝑒𝑡(A − 𝜆0I)x = 0. Therefore, the following statements are equivalent:

• 𝜆0 is an eigenvalue of A

• Ax = 𝜆0x has a nontrivial solution

• (A − 𝜆0I)x = 0 has a nontrivial solution

• A − 𝜆0I is not invertible

• 𝑑𝑒𝑡(A − 𝜆0I) = 0

• 𝑓(𝜆0) = 0

Example 21.3. Using the characteristic equation of the matrix A = (3 5
2 −1), solve for the

eigenvalues and find a basis for the 𝜆-eigenspaces

• do in class

Example 21.4. Using the characteristic equation of the matrix A = ⎛⎜
⎝

0 6 8
1
2 0 0
0 1

2 0
⎞⎟
⎠
, solve for

the eigenvalues and find a basis for the 𝜆-eigenspaces

• do in class (expand cofactors along the third column)
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21.1 Similarity

The idea behind similar matrices is to understand how the linear transformations implied by
the transformation behave. Two matrices are similar if their transformation behavior (rotation,
expansion/contraction, etc.) is the same but the coordinates on which the matrix operates are
different.

Definition 21.2. The matrices A and B are said to be similar if there exists an invertible
matrix P where

A = PBP−1

or equivalently

P−1AP = B

Therefore, it is possible to change A into B with an invertible (one-to-one and onto) transfor-
mation.

Example 21.5. Consider the following example with matrices A, B, and P defined as below:

A <- matrix(c(3, 0, 0, -2), 2, 2)
A

[,1] [,2]
[1,] 3 0
[2,] 0 -2

B <- matrix(c(-12, -10, 15, 13), 2, 2)
B

[,1] [,2]
[1,] -12 15
[2,] -10 13
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P <- matrix(c(-2, 1, 3,-1), 2, 2)
P

[,1] [,2]
[1,] -2 3
[2,] 1 -1

P %*% B %*% solve(P)

[,1] [,2]
[1,] 3 0
[2,] 0 -2

solve(P) %*% A %*% P

[,1] [,2]
[1,] -12 15
[2,] -10 13

Theorem 21.2. If A and B are 𝑛 × 𝑛 similar matrices, then A and B will have the same
characteristic polynomial and therefore the same eigenvalues.

Proof
If A and B are similar, then there exists an invertible matrix P such that

A = PBP−1

Therefore

A − 𝜆I = PBP−1 − 𝜆I
= PBP−1 − 𝜆PP−1

= P (BP−1 − 𝜆P−1)
= P (B − 𝜆I)P−1

To get the characteristic equation, we need to solve for the determinant
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𝑑𝑒𝑡 (A − 𝜆I) = 𝑑𝑒𝑡 (P (B − 𝜆I)P−1)
= 𝑑𝑒𝑡 (P) 𝑑𝑒𝑡 (B − 𝜆I) 𝑑𝑒𝑡 (P−1)

We know that 𝑑𝑒𝑡 (P−1) = 1
𝑑𝑒𝑡(P) (or, equivalently 𝑑𝑒𝑡 (P) 𝑑𝑒𝑡 (P−1) = 𝑑𝑒𝑡 (PP−1) =

𝑑𝑒𝑡(I) = 1), we have 𝑑𝑒𝑡 (A − 𝜆I) = 𝑑𝑒𝑡 (B − 𝜆I) so that A and B have the same
characteristic polynomial (and the same eigenvalues).

21.2 The geometric interpetation of similar matrices

In general, similar matrices do similar things in different spaces (different spaces in terms of
different bases).

Example here
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22 Diagonalization

library(tidyverse)
library(dasc2594)
set.seed(2021)

Definition 22.1. A 𝑛×𝑛 matrix A is diagonalizable if the matrix A is similar to a diagonal
matrix. This is equivalent to saying there exists some invertible 𝑛× 𝑛 matrix P and diagonal
matrix D such that

A = PDP−1

Example 22.1. Any diagonal matrix D is diagonalizable becuase it is self-similar.

Theorem 22.1 (The Diagonalization Theorem). A 𝑛×𝑛 matrix A is diagonalizable if and
only if the matrix A has 𝑛 linearly independent eigenvectors.

In addition, the 𝑛× 𝑛 matrix A = PDP−1 with diagonal matrix D if and only if the columns
of P are the lienarly independent eigenvectors of A. Then, the diagonal elements of D are the
eigenvalues of A that correspond to the eigenvectors in P.

Proof
This comes directly from Theorem 20.1 where if a 𝑛 × 𝑛 matrix has 𝑛 distinct eigen-
values 𝜆1 ≠ 𝜆2 ≠ ⋯ ≠ 𝜆𝑛, the the corresponding eigenvalues v1,v2,… ,v𝑛 are linearly
independent.

This theorem implies that the matrix A is diagonalizable if and only if the eigenvectors of A
form a basis for ℛ𝑛. When this is the case, the set of eigenvectors is called an eigenbasis.
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Example 22.2. Consider the following example of a diagonalizable matrix A

A <- matrix(c(9, 2, 0, -3, 2, -4, 1, 0, 3), 3, 3)
A

[,1] [,2] [,3]
[1,] 9 -3 1
[2,] 2 2 0
[3,] 0 -4 3

eigen_A <- eigen(A)
str(eigen_A)

List of 2
$ values : num [1:3] 7.63 4.52 1.86
$ vectors: num [1:3, 1:3] -0.905 -0.322 0.278 -0.407 -0.324 ...
- attr(*, "class")= chr "eigen"

P <- eigen_A$vectors
P

[,1] [,2] [,3]
[1,] -0.9050468 -0.4069141 -0.01938647
[2,] -0.3217259 -0.3235720 0.27433148
[3,] 0.2781774 0.8542377 0.96143976

D <- diag(eigen_A$values)
D

[,1] [,2] [,3]
[1,] 7.626198 0.000000 0.000000
[2,] 0.000000 4.515138 0.000000
[3,] 0.000000 0.000000 1.858664

P %*% D %*% solve(P)
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[,1] [,2] [,3]
[1,] 9.000000e+00 -3 1.000000e+00
[2,] 2.000000e+00 2 -9.144832e-16
[3,] 1.342835e-15 -4 3.000000e+00

all.equal(A, P %*% D %*% solve(P))

[1] TRUE

Theorem 22.2. Let A be a 𝑛×𝑛 diagonalizable matrix with A = PDP−1. Then, the matrix
power A𝑝 is

A𝑝 = PD𝑝P−1

Proof
In class

Example 22.3. In this example, we apply the diagonalization theorem to the matrix A

Consider the matrix A = ⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

which has eigenvalues 1, 2, 3. Then the standard basis

e1 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠
, e2 = ⎛⎜

⎝

0
1
0
⎞⎟
⎠
, and e3 = ⎛⎜

⎝

0
0
1
⎞⎟
⎠

are corresponding eigenvectors (check the definition

A𝜆 = v𝜆) because

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

⎛⎜
⎝

1
0
0
⎞⎟
⎠

= 1 ∗ ⎛⎜
⎝

1
0
0
⎞⎟
⎠

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

⎛⎜
⎝

0
1
0
⎞⎟
⎠

= 2 ∗ ⎛⎜
⎝

0
1
0
⎞⎟
⎠

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

⎛⎜
⎝

0
0
1
⎞⎟
⎠

= 3 ∗ ⎛⎜
⎝

0
0
1
⎞⎟
⎠
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Thus, by the diagonlaization theorem, we have A = PDP−1 where P is the identity matrix
and D is the diagonal matrix with entries 1, 2, 3.

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

= ⎛⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

⎛⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

−1

which gives us that A is similar to itself.

However, there is nothing in the diagonalization theorem that says that we must put the
eigenvalues in the order 1, 2, 3. If we put the eigenvalues in the order 3, 2, 1, then the
corresponding eigenvectors are e3, e2, and e1. Using the diagonlaization theorem, we have
A = P̃D̃P̃−1 where P̃ is the matrix with columns e3, e2, and e1 and D̃ is the diagonal matrix
with entries 3, 2, 1 which results in

⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

= ⎛⎜
⎝

0 0 1
0 1 0
1 0 0

⎞⎟
⎠

⎛⎜
⎝

3 0 0
0 2 0
0 0 1

⎞⎟
⎠

⎛⎜
⎝

0 0 1
0 1 0
1 0 0

⎞⎟
⎠

−1

which implies that the matrices ⎛⎜
⎝

1 0 0
0 2 0
0 0 3

⎞⎟
⎠

and ⎛⎜
⎝

3 0 0
0 2 0
0 0 1

⎞⎟
⎠

are similar to each other
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23 Inner product, length, and orthogonality

• 3 Blue 1 Brown – The dot prodcut

library(tidyverse)
library(dasc2594)
set.seed(2021)

Definition 23.1. Let u and v be vectors in ℛ𝑛. Then, the inner product of u and v is u′v.
The vectors u and v are 𝑛× 1 matrices where u′ is a 1 × 𝑛 matrix and the inner product u′v
is a scalar (1 × 1 matrix). The inner product is also sometimes called the dot product and
written as u ⋅ v.

If the vectors

u =
⎛⎜⎜⎜⎜
⎝

𝑢1
𝑢2
⋮
𝑢𝑛

⎞⎟⎟⎟⎟
⎠

v =
⎛⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮
𝑣𝑛

⎞⎟⎟⎟⎟
⎠

then u′v = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯𝑢𝑛𝑣𝑛

Example 23.1. Find the inner product u′v and v′u of

u = ⎛⎜
⎝

2
−3
1
⎞⎟
⎠

v = ⎛⎜
⎝

4
−2
3
⎞⎟
⎠

• do by hand

u <- c(2, -3, 1)
v <- c(4, -2, 3)
# u'v
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sum(u*v)

[1] 17

t(u) %*% v

[,1]
[1,] 17

# v'u
sum(v*u)

[1] 17

t(v) %*% u

[,1]
[1,] 17

The properties of inner products are defined with the following theorem.

Theorem 23.1. Let u, v, and w be vectors in ℛ𝑛 and let 𝑐 be a scalar. Then

a) u′v = v′u

b) (u + v)′w = u′w + v′w

c) (𝑐u)′v = 𝑐(v′u)
d) u′u ≥ 0 with u′u = 0 only when u = 0

Based on the theorem above, the inner product of a vector with itself (u′u) is strictly non-
negative. Thus, we can define the length of the vector u (also called the norm of the vector
u).

227



Definition 23.2. The length of a vector v ∈ ℛ𝑛, also called the vector norm ‖v‖ is defined
as

‖v‖ =
√

v′v = √𝑣21 + 𝑣22 +⋯+ 𝑣2𝑛

Example 23.2. Let v = (𝑎
𝑏) ∈ ℛ2. Show that the definition of the norm satisfies the

Pythagorean theorem.

Another property of the norm is how the norm changes based on scalar multiplication. Let
v ∈ ℛ𝑛 be a vector and let 𝑐 be a scalar. Then ‖𝑐v‖ = |𝑐|‖v‖

Definition 23.3. A vector v ∈ ℛ𝑛 whose length/norm is 1 is called a unit vector. Any vector
can be made into a unit vector through normalization by multiplying the vector v by 1

‖v‖ to
get a unit vector u = v

‖v‖ in the same direction as v.

23.1 Distance

In two dimensions, the Euclidean distance between the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is defined
as √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. In higher dimensions, a similar definition holds.

Definition 23.4. Let u and v be vectors in ℛ𝑛. Then the distance 𝑑𝑖𝑠𝑡(u,v) between u and
v is

𝑑𝑖𝑠𝑡(u,v) = ‖u − v‖

Example 23.3. Distance between two 3-dimensional vectors

u <- c(3, -5, 1)
v <- c(4, 3, -2)
sqrt(sum((u-v)^2))

[1] 8.602325
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23.2 Orthogonal vectors

The equivalent of perpendicular lines in ℛ𝑛 are known as orthogonal vectors.

Definition 23.5. The two vectors u and v in ℛ𝑛 are orthogonal if

u′v = 0

23.3 Angles between vectors

Let u and v be vectors ℛ𝑛. Then, the angle between the vectors u and v is defined as the
angle 𝜃 in the relationship

u′v = ‖u‖‖v‖𝑐𝑜𝑠(𝜃)

Solving for the angle 𝜃 results in the equation

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠( u′v
‖u‖‖v‖)

where 𝑎𝑟𝑐𝑐𝑜𝑠(⋅) is inverse cosine function, which is acos() in R.

see example: angles-as-n-gets-large.R

Example 23.4.

Let u = ⎛⎜
⎝

1
4
6
⎞⎟
⎠

and v = ⎛⎜
⎝

−5
2
4
⎞⎟
⎠
. What is the angle between these two vectors?

Solution
The angle between the vectors u and v depends on the dot product between the two
vectors and the norms (lengths) of the two vectors. The inner product of u and v is

u′v = (1 4 6)⎛⎜
⎝

−5
2
4
⎞⎟
⎠

= 1 ∗ −5 + 4 ∗ 2 + 6 ∗ 4 = 27
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where the vector u has length

‖u‖ = √𝑢2
1 + 𝑢2

2 + 𝑢2
3 = √12 + 42 + 62 =

√
53 = 7.2801099

and the vector v has length

‖v‖ = √𝑣21 + 𝑣22 + 𝑣23 = √−52 + 22 + 42 =
√
45 = 6.7082039

Plugging these into the equation for the angle 𝜃 gives

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠( u′v
‖u‖‖v‖)

= 𝑎𝑟𝑐𝑐𝑜𝑠( 27
7.2801099 ∗ 6.7082039)

= 0.984997
which gives an angle of 𝜃 = 0.984997 radians between the vector u and v. In degrees,
this angle is 𝜃 = 0.984997 * 180

𝜋 = 56.4361716 degrees.
In R, this angle can be found by finding the dot product of u and v

u <- c(1, 4, 6)
v <- c(-5, 2, 4)
sum(u * v) # dot product of u and v

[1] 27

as well as the lengths of these two vectors

sqrt(sum(u^2)) # length of u

[1] 7.28011

sqrt(sum(v^2)) # length of v

[1] 6.708204

Combining these, the angle 𝜃 can be calculate in radians as

theta <- acos(sum(u * v) / (sqrt(sum(u^2)) * sqrt(sum(v^2))))
theta

[1] 0.984997
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and in degrees this is

theta * 180 / pi

[1] 56.43617

23.4 Orthogonal sets

The set of vectors 𝒮 = {v1,… ,v𝑝} in ℛ𝑛 is said to be an orthogonal set if every pair of
vectors is orthogonal. In other words, for all 𝑖 ≠ 𝑗, v′

𝑖v𝑗 = 0. The set is called an orthonormal
set if the set of vectors are orthogonal and for 𝑖 = 1,… , 𝑝, each vector v𝑖 in the set has length
‖v𝑖‖ = 1.

Example 23.5. Show the set of vectors
⎧{
⎨{⎩

v1 = ⎛⎜
⎝

3
1
1
⎞⎟
⎠

,v2 = ⎛⎜
⎝

−1
2

−2
7
2

⎞⎟
⎠

,v3 = ⎛⎜
⎝

−1
2
1
⎞⎟
⎠

⎫}
⎬}⎭

is orthog-

onal

• Show these are orthogonal using R

If the set of vectors {v1,… ,v𝑝} are an orthogonal set, then the set of vectors { v1
‖v1‖ ,… , v𝑝

‖v𝑝‖}
is an orthonormal set. Note that for each 𝑖, the length of the vector v𝑖

‖v𝑖‖ = 1

Theorem 23.2. Let the set 𝒮 = {v1,… ,v𝑝} be an orthogonal set of nonzero vectors in ℛ𝑛.
Then, the set of vectors in 𝒮 are linearly independent and therefore are a basis for the space
spanned by 𝒮.

Proof
Assume the set of vectors v1,… ,v𝑝 are linearly dependent. Then, there exist coefficients
𝑐1,… , 𝑐𝑝 such that

0 = 𝑐1v1 + 𝑐2v2 +⋯+ 𝑐𝑝v𝑝

Then, multiplying both equations on the left by v′
1 gives
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0 = v′
10 = v′

1(𝑐1v1 + 𝑐2v2 +⋯+ 𝑐𝑝v𝑝)
= 𝑐1v′

1v1 + 𝑐2v′
1v2 +⋯+ 𝑐𝑝v′

1v𝑝
= 𝑐1v′

1v1 + 𝑐20 + ⋯+ 𝑐𝑝0
= 𝑐1v′

1v1

which is only equal to 0 when 𝑐1 is equal to 0 because v1 is a nonzero vector. The above
left multiplication could be repeated for each vector v𝑖 which gives all 𝑐𝑖 must equal 0.
As the only solution to the starting equation has all 0 coefficients, the set of vectors 𝒮
must be linearly independent.

A set of orthogonal vectors is called an orthogonal basis.

Theorem 23.3. Let {v1,… ,v𝑝} be an orthogonal basis of the subspace 𝒲 of ℛ𝑛. Then for
each x ∈ 𝒲, the coefficients for the linear combination of basis vectors {v1,… ,v𝑝} for the
vector x are

x = x′v1
v′
1v1

v1 +
x′v2
v′
2v2

v2 +⋯+ x′v𝑝
v′𝑝v𝑝

v𝑝

= 𝑐1v1 + 𝑐2v2 +⋯+ 𝑐𝑝v𝑝

where 𝑐𝑗 =
x′v𝑗
v′
𝑗v𝑗

. In other words, the coordinates of the vector x with respect to the orthogonal
basis {v1,… ,v𝑝} are the linear projection of the vector x on the respective vectors v𝑗.

Proof
The orthogonality of the basis {v1,… ,v𝑝} gives

x′v𝑗 = (𝑐1v1 + 𝑐2v2 +⋯+ 𝑐𝑝v𝑝)
′ v𝑗

= 𝑐𝑗v′
𝑗v𝑗

Because we know that v′
𝑗v𝑗 is not zero (a vector can’t be orthogonal to itself), we can

divide the above equality by v′
𝑗v𝑗 and solve for 𝑐𝑗 =

x′v𝑗
v′
𝑗v𝑗

Thus, for a vector x in the standard basis, the coordinates of x with respect to an orthogonal
basis can be easily calculated using dot products (rather than matrix inverses) which is an
easier computation.

In fact, this is exactly the idea of using least squares estimation (linear regression, spline
regression, etc.).
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23.5 Orthogonal projections

Definition 23.6. Let x be a vector in ℛ𝑛 and let 𝒲 be a subspace of ℛ𝑛. Then the vector
x can be written as the orthogonal decomposition

x = x𝒲 + x𝒲⟂

where x𝒲 is the vector in 𝒲 that is closest to x and is called the orthogonal projection of
x onto 𝒲 and x𝒲⟂ is the orthogonal projection of x onto 𝒲⟂, the subspace 𝒲⟂ of ℛ𝑛 that
is complementary to 𝒲 and is called the orthogonal complement.

Draw picture in class - W is a plane, orthogonal projection of a vector onto the
plane

This leads to the projection theorem that decomposes a vector x ∈ ℛ𝑛 into components that
are

Theorem 23.4. Let {v1,… ,v𝑝} be an orthogonal basis of the subspace 𝒲 of ℛ𝑛. Then for
each x ∈ ℛ𝑛, the orthogonal projection of x onto 𝒲 is given by

x𝒲 = x′v1
v′
1v1

v1 +
x′v2
v′
2v2

v2 +⋯+ x′v𝑝
v′𝑝v𝑝

v𝑝

= 𝑐1v1 + 𝑐2v2 +⋯+ 𝑐𝑝v𝑝

where the coefficient 𝑐𝑗 corresponding to the vector v𝑗 of the linear combination of vectors
{v1,… ,v𝑝} is given by 𝑐𝑗 =

x′v𝑗
v′
𝑗v𝑗

. In other words, the coordinates of the vector x with respect
to the orthogonal basis {v1,… ,v𝑝} are the linear projection of the vector x on the respective
vectors v𝑗.

You might be wondering what use orthogonal projections are. In fact, linear regression (and
most common regression models) use orthogonal projections to fit a line (or surface) of best
fit. This leads to the important theorem that allows us to project a vector y ∈ ℛ𝑛 onto the
column space of a 𝑛 × 𝑝 matrix X (which is exactly the linear regression of y onto X).
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Theorem 23.5 (Orthogonal Projection Theorem). Let X be a 𝑛× 𝑝 matrix, let 𝒲 = col(X),
and let y be a vector in ℛ𝑛. Then the matrix equation

X′X𝛽 = X′y

with respect to the unknown coefficients 𝛽 is consistent and y𝒲 = X𝛽 for any solution 𝛽.

Proof
Show this in class

In addition, if the columns of X are linearly independent, then the coefficients 𝛽 are given
by

𝛽 = (X′X)−1 X′y

which is the least squares solution to the linear regression problem. For example, let X and y
be defined as below

X <- cbind(1, c(2, -1, 3, -4, 5, 7, -2, 3))
y <- c(5, 3, 4, -9, 11, 12, -5, 6)

Plotting this data shows the strong positive linear relationship

# The first column is a basis for a constant term (the intercept)
data.frame(x = X[, 2], y = y) %>%

ggplot(aes(x = x, y = y)) +
geom_point()
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We can solve for the coefficients beta using the linear project theorem

beta <- solve(t(X) %*% X) %*% t(X) %*% y

and using this solution, solve for the projection y𝒲 of y onto X

y_W <- X %*% beta

Plotting the projection y𝒲 gives

# The first column is a basis for a constant term (the intercept)
data.frame(x = X[, 2], y = y, y_W = y_W) %>%

ggplot(aes(x = x, y = y)) +
geom_point() +
geom_line(aes(x = x, y = y_W))
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The complement of the project (called the residuals in statistics) is given by y𝒲⟂ = y−y𝒲

y_W_perp <- y - y_W

and can be visualized as the orthogonal projection using segments

# The first column is a basis for a constant term (the intercept)
data.frame(x = X[, 2], y = y, y_W = y_W) %>%

ggplot(aes(x = x, y = y)) +
geom_point() +
geom_line(aes(x = x, y = y_W)) +
geom_segment(aes(x = x, y = y_W, xend = x, yend = y_W + y_W_perp), color = "blue")
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Recall that the orthogonal projection gives the “closest” vector y𝑊 to y that is in the subspace
𝒲 that is the span of the column space of X. See https://www.enchufa2.es/archives/least-
squares-as-springs-the-shiny-app.html for an example.
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24 Graphs and Limits

library(tidyverse)
library(dasc2594)
set.seed(2021)

Here we start a transition to topics in vector calculus. We will start with a discussion of
functions of two variables (although the functions are not assumed to be linear). We define a
function of two variables explicitly as 𝑧 = 𝑓(𝑥, 𝑦).

Definition 24.1. Like with linear functions, we can define the domain and range for general
functions of two variables. A function 𝑓(𝑥, 𝑦) assigns each point (𝑥, 𝑦) in some domain 𝒟 in
ℛ2 to a unique number 𝑧 in a subset of ℛ. The set of inputs 𝒟 is called the domain of the
function and the range is the set of real numbers 𝑧 that are the output of the function over
all the inputs in 𝒟

Example 24.1. Let 𝑓(𝑥, 𝑦) = √1 − 𝑥2 − 𝑦2.

• The domain of 𝑓 is the set of points (𝑥, 𝑦) such that 𝑥2 + 𝑦2 ≤ 1 which is the unit circle
(draw picture).

• The range is the unit interval [0, 1]

24.1 Graphs and level curves

Example 24.2. The parabola

Consider the function of two variables

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2
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which defines the surface

x

y

z

The 3-dimensional surface can be represented in 2-dimensions using level curves (think of a
topographic map)

data.frame(expand.grid(x, y)) %>%
rename(x = Var1, y = Var2) %>%
mutate(z = parabola(x, y)) %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour() +
coord_fixed(ratio = 1)
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where each curve in the (x, y) plane has exactly the same value of 𝑓(𝑥, 𝑦). Alternatively, this
can be represented using filled level curves

data.frame(expand.grid(x, y)) %>%
rename(x = Var1, y = Var2) %>%
mutate(z = parabola(x, y)) %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour_filled() +
coord_fixed(ratio = 1)
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(0.0, 0.2]

(0.2, 0.4]

(0.4, 0.6]

(0.6, 0.8]

(0.8, 1.0]

(1.0, 1.2]

(1.2, 1.4]

(1.4, 1.6]

(1.6, 1.8]

(1.8, 2.0]

Notice that although the original parabola was continuous, these 2-d representations simplify
the diagram by representing the contours as discrete values.

Example 24.3. A saddle function

Consider the function of two variables

𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2

which defines the surface
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x y

z

The 3-dimensional surface can be represented in 2-dimensions using level curves (think of a
topographic map)

data.frame(expand.grid(x, y)) %>%
rename(x = Var1, y = Var2) %>%
mutate(z = saddle(x, y)) %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour() +
coord_fixed(ratio = 1)
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where each curve in the (x, y) plane has exactly the same value of 𝑓(𝑥, 𝑦). Alternatively, this
can be represented using filled level curves

data.frame(expand.grid(x, y)) %>%
rename(x = Var1, y = Var2) %>%
mutate(z = saddle(x, y)) %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour_filled() +
coord_fixed(ratio = 1)

243



−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
x

y

level

(−1.0, −0.8]

(−0.8, −0.6]

(−0.6, −0.4]

(−0.4, −0.2]

(−0.2, 0.0]

(0.0, 0.2]

(0.2, 0.4]

(0.4, 0.6]

(0.6, 0.8]

(0.8, 1.0]

Notice that although the original saddle was continuous, these 2-d representations simplify the
diagram by representing the contours as discrete values.

24.2 Limits

For functions of several variables, we have to define limits and continuity for these multivariable
settings. For now, we focus on two variable functions as the multivariable case follows similar
from the two variable case.

Let 𝑃(𝑥, 𝑦) → 𝑃0(𝑎, 𝑏) be a path in the 𝑥 − 𝑦 plane that starts at the point 𝑃(𝑥, 𝑦) and ends
at the point 𝑃0(𝑎, 𝑏) with coordinates (𝑎, 𝑏). Thus, we can understand the limit as the fixed
value of 𝑓(𝑥, 𝑦) for which all paths that connect the points 𝑃(𝑥, 𝑦) that are “close” to 𝑃0(𝑎, 𝑏)
converge to.

For one-dimensional limits, “close” was defined as distance. Thus, for multivariable functions,
“close” is defined as the Euclidean distance defined by a “ball” of radius 𝛿 and the limits
examines the function output as the radius 𝛿 goes to 0.

Recall that the distance 𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) between two points (𝑥, 𝑦) and (𝑎, 𝑏) is

𝑑𝑖𝑠𝑡((𝑥, 𝑦), (𝑎, 𝑏)) = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2
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** Draw images**

Definition 24.2 (Limit of a Function of Two Variables). The function f(x, y) has limit 𝐿 as
𝑃(𝑥, 𝑦) → 𝑃0(𝑎, 𝑏), written

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = lim
𝑃→𝑃0

𝑓(𝑥, 𝑦) = 𝐿,

if, for any 𝜖 > 0 (the radius of the ball that defines the “closeness” of the point), there exists
a 𝛿 > 0 such that

|𝑓(𝑥, 𝑦) − 𝐿| < 𝜖

whenever (𝑥, 𝑦) is in the domain of 𝑓 and

0 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝛿.

In the definition, as the value of 𝛿 is getting smaller, the distance between the set of points
𝑃(𝑥, 𝑦) within radius 𝛿 of the point 𝑃0(𝑎, 𝑏) is getting smaller. As a consequence, the limit in
the definition above exists only if 𝑓(𝑥, 𝑦) approaches the value 𝐿 along all possible paths in
the domain of 𝑓 .

Example 24.4. In class notes * Future work: write out hand-written examples

Theorem 24.1. Let 𝐿 and 𝑀 be real numbers and let lim(𝑥,𝑦)→(𝑎,𝑏) 𝑓(𝑥, 𝑦) = 𝐿 and
lim(𝑥,𝑦)→(𝑎,𝑏) 𝑔(𝑥, 𝑦) = 𝑀 for functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦). Let 𝑐 be a constant and 𝑛 > 0,
then:

1) Sum of limits:

lim
(𝑥,𝑦)→(𝑎,𝑏)

(𝑓(𝑥, 𝑦) + 𝑔(𝑥, 𝑦)) = 𝐿 +𝑀

2) Difference of limits:

lim
(𝑥,𝑦)→(𝑎,𝑏)

(𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)) = 𝐿 −𝑀
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3) Scalar multiple of the limit:

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑐𝑓(𝑥, 𝑦) = 𝑐𝐿

4) Product of limits:

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦) = 𝐿𝑀

5) Quotient of limits: As long as 𝑀 > 0 we have

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦)
𝑔(𝑥, 𝑦) = 𝐿

𝑀

6) Power of the limit:

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦)𝑛 = 𝐿𝑛

7) Root of the limit: If 𝑛 is even, we assume 𝐿 > 0

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦)1/𝑛 = 𝐿1/𝑛

Example 24.5. Use the rules above to evaluate the limit lim(𝑥,𝑦)→(2,3) 4𝑥3𝑦 + √𝑥𝑦

24.2.1 Boundary points

Definition 24.3. Define a region 𝒟 in ℛ2.

• An interior point 𝑃 of 𝒟 is a point that lies entirely in the region 𝒟. Mathematically, a
point 𝑃 is an interior point of 𝒟 if it is possible to define a ball of radius 𝜖 > 0 centered
at 𝑃 such that this ball only contains points within 𝒟.

• A boundary point 𝑃 of 𝒟 is a point that lies on the edge of the region 𝒟. Mathemat-
ically, a point 𝑃 is an boundary point of 𝒟 if every ball of radius 𝜖 > 0 centered at 𝑃
contains at least one point in 𝒟 and one point outside 𝒟.
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Example 24.6. Let 𝑓(𝑥, 𝑦) = √1 − 𝑥2 − 𝑦2. The boundary points are all the points on the
unit circle an the interior points are all the points on the interior of the unit disk. draw
picture

Definition 24.4. A region 𝒟 is said to be open if it only contains interior points (i.e., 𝒟 has
no boundary points). A region 𝒟 is said to be closed if the region contains all its boundary
points.

Figure: limit paths along the boundary

Example 24.7. Consider the lim(𝑥,𝑦)→(4,4)
𝑥2−𝑦2

𝑥−𝑦 . Because the point (4, 4) is not a valid point
in the domain (can’t divide by 4 − 4 = 0), the point (4, 4) is a boundary point of the domain.
The boundary of the domain that is not contained in the domain is the set of points 𝑥 = 𝑦.
Assuming we are not taking a path along the boundary, we know that 𝑥 ≠ 𝑦 in the interior of
the domain. Hence,

lim
(𝑥,𝑦)→(4,4)

𝑥2 − 𝑦2
𝑥 − 𝑦 = lim

(𝑥,𝑦)→(4,4)
(𝑥 − 𝑦)(𝑥 + 𝑦)

𝑥 − 𝑦
= lim

(𝑥,𝑦)→(4,4)
𝑥 + 𝑦 = 4 + 4 = 8

for all paths that do not cross the line 𝑦 = 𝑥.

Example 24.8. nonexistence of limit in class

24.3 Continuity

A very important property of functions is continuity. In a general sense, a function is continuous
if two nearby input values result in nearby output values. As a graph, this means that there
are no hops, skips, or jumps.

Definition 24.5. The function 𝑓(𝑥, 𝑦) is said to be continuous at the point (𝑎, 𝑏) if the
following are true
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1) 𝑓(𝑎, 𝑏) is defined at (𝑎, 𝑏)
2) lim(𝑥,𝑦)→(𝑎,𝑏) 𝑓(𝑥, 𝑦) exists
3) lim(𝑥,𝑦)→(𝑎,𝑏) 𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏)

Example 24.9. checking continuity in class 𝑓(𝑥, 𝑦) = {
𝑥2−𝑦2

𝑥−𝑦 if 𝑥 ≠ 𝑦
𝑥 + 𝑦 if 𝑥 = 𝑦
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25 Partial Derivatives

library(tidyverse)
library(plotly)
library(dasc2594)
set.seed(2021)

Recall that for a function of one variable, the derivative gives the rate of change of the function
with respect to that variable. The function 𝑓(𝑥) has an instantaneous rate of change 𝑑

𝑑𝑥𝑓(𝑥),
assuming the derivative 𝑑

𝑑𝑥𝑓(𝑥) exists.
This concept can be extended to functions of multivariables where we now have to specify
a direction in which the function changes. For example, consider a mountain which is very
steep in the north/south direction but is much less steep in the east/west direction. Thus, the
directional derivative in the north/south direction will have a larger absolute value (higher
rate of change) than the directional derivative in the east/west direction.

For example, consider the function

mountain <- function(x, y) {
4 - 9 * x^2 - y^2

}
dat <- expand_grid(x = seq(-4, 4, length.out = 20), y = seq(-4, 4, length.out = 20)) %>%

mutate(z = mountain(x, y))

dat %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour() +
coord_fixed(ratio = 1)
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plot_ly(z = matrix(dat$z, 20, 20)) %>%
add_surface(

contours = list(
z = list(

show=TRUE,
usecolormap=TRUE,
highlightcolor="#ff0000",
project=list(z=TRUE)

)
)

)
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Note that the partial derivative asks the question “What is the rate of change of one variable
holding all the other variables constant?” Thus, the question can be phrased as what is the
derivative of the function 𝑓(𝑥, 𝑦) at the point (𝑎, 𝑏) where we only let one variable change? To
make the notation of a partial derivative clear, a special symbol is used where 𝜕

𝜕𝑥 is the partial
derivative with respect to the 𝑥 variable (holding the y variable constant).

draw surfaces with marginal slices

Definition 25.1. The partial derivative of the function 𝑓(𝑥, 𝑦) with respect to 𝑥 at the point
(𝑎, 𝑏) is

𝜕
𝜕𝑥𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦) = lim

ℎ→0
𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)

ℎ .

The partial derivative of the function 𝑓(𝑥, 𝑦) with respect to 𝑦 at the point (𝑎, 𝑏) is

𝜕
𝜕𝑦𝑓(𝑥, 𝑦) = 𝑓𝑦(𝑥, 𝑦) = lim

ℎ→0
𝑓(𝑎, 𝑏 + ℎ) − 𝑓(𝑎, 𝑏)

ℎ ,

as long as these limits exist.

Example 25.1. partial derivatives using limit definition
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Example 25.2. Let 𝑓(𝑥, 𝑦) = 3𝑥2−4𝑦3+3, Compute 𝜕
𝜕𝑥𝑓(𝑥, 𝑦) and 𝜕

𝜕𝑦𝑓(𝑥, 𝑦). Then evaluate
each derivative at (−2, 3).

Notice that you can find partial derivatives by holding all the other variables constant and
then finding the equivalent univariate derivative.

25.1 Higher-order partial derivatives

We can calculate the partial derivatives of partial derivatives. The derivatives could be with
respect to the same variable repeatedly or the derivatives could be with respect to different
variables in which case we call these mixed partial derivatives. Notation for higher order
partial derivatives is 𝜕2

𝜕𝑥𝜕𝑦𝑓(𝑥, 𝑦) = 𝑓𝑥𝑦(𝑥, 𝑦) which says first take the partial derivative of with
respect to 𝑦 then take the partial derivative with respect to 𝑥. The possible sets of second-order
partial derivatives for functions of two variables are shown in the table below

Notation 1 Notation 2
𝜕
𝜕𝑥

𝜕
𝜕𝑥𝑓(𝑥, 𝑦) = 𝜕2

𝜕𝑥2 𝑓(𝑥, 𝑦) 𝑓𝑥𝑥(𝑥, 𝑦)
𝜕
𝜕𝑦

𝜕
𝜕𝑦𝑓(𝑥, 𝑦) = 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦) 𝑓𝑦𝑦(𝑥, 𝑦)
𝜕
𝜕𝑥

𝜕
𝜕𝑦𝑓(𝑥, 𝑦) = 𝜕2

𝜕𝑥𝜕𝑦𝑓(𝑥, 𝑦) 𝑓𝑥𝑦(𝑥, 𝑦)
𝜕
𝜕𝑦

𝜕
𝜕𝑥𝑓(𝑥, 𝑦) = 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦) 𝑓𝑦𝑥(𝑥, 𝑦)

Example 25.3. Find the four second-order partial derivatives of 𝑓(𝑥, 𝑦) = 3𝑥2𝑦3 +4𝑥𝑦 − 3𝑥2

Note that the order in which mixed partial derivatives are taken can sometimes change the
result. However, it is often the case that the order of the partial derivatives can be switched.

Theorem 25.1. Let the function 𝑓(𝑥, 𝑦) be defined on an open domain 𝒟 of ℛ2 and assume
that 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are continuous over the domain 𝒟. Then, 𝑓𝑥𝑦 = 𝑓𝑦𝑥 for all points in the
domain 𝒟.

Many of the commonly used functional forms in data science meet the criteria above. Thus,
for many of the commonly used functions in data science, the order of evaluation of partial
derivatives often does not matter. In practice, it is always good practice to verify this though.
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26 The chain rule

library(tidyverse)
library(plotly)
library(dasc2594)
set.seed(2021)

Recall the univariate chain rule: If 𝑦 = 𝑓(𝑥) is a function of 𝑥 and 𝑧 = 𝑔(𝑦) is a function of 𝑦,
a question of interest is “What is the change in 𝑧 relative to change in 𝑥?
We can write 𝑧 = 𝑔(𝑦) = 𝑔(𝑓(𝑥)) and using this notation, the change in 𝑧 with respect to the
variable 𝑥 is 𝑑𝑧

𝑑𝑥 = 𝑑𝑧
𝑑𝑦

𝑑𝑦
𝑑𝑥 = 𝑑𝑓(𝑦)

𝑑𝑦
𝑑𝑔(𝑥)
𝑑𝑥 . Written in functional form

(𝑔(𝑓(𝑥)))′ = (𝑔 ∘ 𝑓)′(𝑥) = 𝑔′(𝑓(𝑥))𝑓 ′(𝑥)

Example 26.1. Let 𝑧 = 𝑓(𝑦) = 𝑦3 and let 𝑦 = 𝑔(𝑥) = 𝑒𝑥 what is 𝑑𝑧
𝑑𝑥?

26.1 The chain rule with one independent variable

Drawing in class

Definition 26.1 (Chain Rule For One Independent Variable). Let 𝑧 be a differentiable func-
tion of two variables 𝑥 and 𝑦 so that 𝑧 = 𝑓(𝑥, 𝑦) and let 𝑥 = 𝑔(𝑡) be a function of 𝑡 and 𝑦 = ℎ(𝑡)
a function of 𝑡. Written in functional form, 𝑧 can be written as 𝑧 = 𝑓(𝑥, 𝑦) = 𝑓(𝑔(𝑡), ℎ(𝑡)),
with 𝑥 = 𝑔(𝑡) and 𝑦 = ℎ(𝑡). Then we can define the derivative of 𝑧 with respect to 𝑡 as

𝑑𝑧
𝑑𝑡 = 𝜕𝑧

𝜕𝑥
𝑑𝑥
𝑑𝑡 + 𝜕𝑧

𝜕𝑦
𝑑𝑦
𝑑𝑡

• For the definition above, we have the dependent variable 𝑧 and we have intermediate
variables 𝑥 and 𝑦.
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• Notice in the definition above that there is a mix of partial derivatives (𝜕) and ordinary
derivatives (𝑑).

Example 26.2. Let 𝑧 = 𝑥2 + 𝑒𝑦 and let 𝑥 = cos(𝑡) and 𝑦 = sin(𝑡)

The results from above can also be extended to have more than two intermediate variables.

Draw picture

26.2 The chain rule with several independent variables

Often, functions will have more than one independent variables.

Definition 26.2 (Chain Rule For Two Independent Variables). Let 𝑧 be a differentiable func-
tion of two variables 𝑥 and 𝑦 so that 𝑧 = 𝑓(𝑥, 𝑦) and let 𝑥 = 𝑔(𝑡, 𝑠) be a function of 𝑠 and
𝑡 and 𝑦 = ℎ(𝑠, 𝑡) a function of 𝑠 and 𝑡. Written in functional form, 𝑧 can be written as
𝑧 = 𝑓(𝑥, 𝑦) = 𝑓(𝑔(𝑠, 𝑡), ℎ(𝑠, 𝑡)), with 𝑥 = 𝑔(𝑠, 𝑡) and 𝑦 = ℎ(𝑠, 𝑡). Then we can define the partial
derivative of 𝑧 with respect to 𝑠 as

𝜕𝑧
𝜕𝑠 = 𝜕𝑧

𝜕𝑥
𝜕𝑥
𝜕𝑠 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑠

the partial derivative of 𝑧 with respect to 𝑡 as
𝜕𝑧
𝜕𝑡 = 𝜕𝑧

𝜕𝑥
𝜕𝑥
𝜕𝑡 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑡

Example 26.3. Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑒𝑦 and let 𝑥 = 2𝑠 − 𝑡 and 𝑦 = 4𝑠3 − 3𝑡2
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26.3 The chain rule in matrix notation

To get a better understanding of the chain rule, it helps to show the chain rule using matrix
notation. Using the matrix notation will enable you to apply the chain rule to any number of
intermediate variables. For example, consider the extension of the definition for the chain rule
of a function with one independent variable.

Definition 26.3 (Matrix Chain Rule For One Independent Variable). Let 𝑧 be a differentiable
function of two variables 𝑥 and 𝑦 so that 𝑧 = 𝑓(𝑥, 𝑦) and let 𝑥 = 𝑔(𝑡) be a function of 𝑡 and 𝑦 =
ℎ(𝑡) a function of 𝑡. Written in functional form, 𝑧 can be written as 𝑧 = 𝑓(𝑥, 𝑦) = 𝑓(𝑔(𝑡), ℎ(𝑡)),
with 𝑥 = 𝑔(𝑡) and 𝑦 = ℎ(𝑡). Then we can define the derivative of 𝑧 with respect to 𝑡 as

𝑑𝑧
𝑑𝑡 = 𝜕𝑧

𝜕𝑥
𝑑𝑥
𝑑𝑡 + 𝜕𝑧

𝜕𝑦
𝑑𝑦
𝑑𝑡

Written in matrix notation, this is
𝑑𝑧
𝑑𝑡 = ( 𝜕𝑧

𝜕𝑥
𝜕𝑧
𝜕𝑦)(

𝑑𝑥
𝑑𝑡𝑑𝑦
𝑑𝑡
) = 𝜕𝑧

𝜕𝑥
𝑑𝑥
𝑑𝑡 + 𝜕𝑧

𝜕𝑦
𝑑𝑦
𝑑𝑡

The definition above for the chain rule with two variables is given by

Definition 26.4 (Chain Rule For Two Independent Variables). Let 𝑧 be a differentiable func-
tion of two variables 𝑥 and 𝑦 so that 𝑧 = 𝑓(𝑥, 𝑦) and let 𝑥 = 𝑔(𝑡, 𝑠) be a function of 𝑠 and
𝑡 and 𝑦 = ℎ(𝑠, 𝑡) a function of 𝑠 and 𝑡. Written in functional form, 𝑧 can be written as
𝑧 = 𝑓(𝑥, 𝑦) = 𝑓(𝑔(𝑠, 𝑡), ℎ(𝑠, 𝑡)), with 𝑥 = 𝑔(𝑠, 𝑡) and 𝑦 = ℎ(𝑠, 𝑡). Then we can define the partial
derivative of 𝑧 with respect to 𝑠 as

𝜕𝑧
𝜕𝑠 = 𝜕𝑧

𝜕𝑥
𝜕𝑥
𝜕𝑠 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑠

which, in matrix notation is
𝑑𝑧
𝑑𝑠 = ( 𝜕𝑧

𝜕𝑥
𝜕𝑧
𝜕𝑦)(

𝜕𝑥
𝜕𝑠𝜕𝑦
𝜕𝑠

) = 𝜕𝑧
𝜕𝑥

𝜕𝑥
𝜕𝑠 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑠

The partial derivative of 𝑧 with respect to 𝑡 as
𝜕𝑧
𝜕𝑡 = 𝜕𝑧

𝜕𝑥
𝜕𝑥
𝜕𝑡 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑡

which, in matrix notation is
𝑑𝑧
𝑑𝑡 = ( 𝜕𝑧

𝜕𝑥
𝜕𝑧
𝜕𝑦)(

𝜕𝑥
𝜕𝑡𝜕𝑦
𝜕𝑡

) = 𝜕𝑧
𝜕𝑥

𝜕𝑥
𝜕𝑡 + 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑡
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This use of matrix notation for derivatives will be useful in understanding the gradient.
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27 The gradient and directional derivatives

library(tidyverse)
library(plotly)
library(dasc2594)
set.seed(2021)

Partial derivatives tell about how a rate of function changes in a particular direction (in the
direction of a coordinate).

Think about trying to find the maximum of a real-valued function (finding the minimum
is equivalent to finding the maximum of the negative value of the function). Finding the
maximum of a function is analogous to hiking up a mountain and trying to find the highest
peak.

Suppose you are standing on a mountain surface at the point (𝑥, 𝑦, 𝑧) in 3-dimensions where
𝑧 = 𝑓(𝑥, 𝑦) is the function that gives the height of the mountain at location (𝑥, 𝑦). If you are
standing at the point (𝑎, 𝑏) in the (𝑥, 𝑦) coordinate system, you might want to get to the top
of the mountain as quickly as possible. The direction that is the steepest uphill direction can
be calculated using the concepts of the directional derivative and the gradient.

Definition 27.1 (Directional Derivative). Given a function 𝑓(𝑥, 𝑦) that is differentiable at

(𝑎, 𝑏) and a unit vector v = (𝑣1
𝑣2
) in the 𝑥−𝑦 plane, the directional derivative of 𝑓 at (𝑎, 𝑏)

in the direction of v is

𝐷v𝑓(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎 + ℎ𝑣1, 𝑏 + ℎ𝑣2) − 𝑓(𝑎, 𝑏)
ℎ

assuming the limit exists.

To understand how the directional derivative relates to partial derivatives, in the definition
above, let 𝑣2 = 0 and to make v a unit vector, set 𝑣1 = 1 (v is the standard basis vector e1).
Then, the limit in the directional derivative definition above becomes

lim
ℎ→0

𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)
ℎ
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which is the definition for the partial derivative of 𝑓 in the 𝑥 direction 𝑓𝑥 = 𝜕𝑓
𝜕𝑥 (Definition 25.1).

Likewise, letting v = e2, the standard basis vector in the y direction, gives the partial derivative
in the y direction 𝑓𝑦 = 𝜕𝑓

𝜕𝑦 . Thus, one could pick any direction vector v and then calculate the
partial derivative in that direction.

Now observe that any line that goes through the point (𝑎, 𝑏) in the direction of the unit vector
v ∈ ℛ2 can be written as the set of points {(𝑥 = 𝑎 + 𝑠𝑣1, 𝑦 = 𝑏 + 𝑠𝑣2)|𝑠 ∈ ℛ} which forms a
line through the point (𝑎, 𝑏) in the direction of v. In this definition, the value 𝑠 determines the
length of the vector because v is a unit vector. At 𝑠 = 0, this definition corresponds to the point
(𝑎, 𝑏) and as 𝑠 increases, the points (𝑥, 𝑦) are the set of points along the line that are distance
|𝑠| away from (𝑎, 𝑏). Notice that this set defines a function 𝑔(𝑠) = 𝑓(𝑎+𝑠𝑣1, 𝑏 + 𝑠𝑣2) = 𝑓(𝑥, 𝑦)
which is a single variable function of the two inputs 𝑥 and 𝑦 of 𝑓(𝑥, 𝑦). Given this definition,
the directional derivative of 𝑓(𝑥, 𝑦) in the direction of v at the point (𝑎, 𝑏) is now given by

𝐷v𝑓(𝑎, 𝑏) =
𝑑
𝑑𝑠𝑔(𝑠)|𝑠=0

= 𝜕𝑓
𝜕𝑥

𝑑𝑥
𝑑𝑠 + 𝜕𝑓

𝜕𝑦
𝑑𝑦
𝑑𝑠 |𝑠=0

= 𝑓𝑥(𝑎, 𝑏)𝑣1 + 𝑓𝑦(𝑎, 𝑏)𝑣2
= (𝑓𝑥(𝑎, 𝑏) 𝑓𝑦(𝑎, 𝑏))(

𝑣1
𝑣2
)

which is the dot product of the vectors (𝑓𝑥(𝑎, 𝑏)
𝑓𝑦(𝑎, 𝑏)

) and v.

Notice that the vector v is a unit vector and therefore the directional derivative is a weighted
sum of the partial derivatives in the 𝑥 and 𝑦 directions weighted by the vector v (weighted
sums are sums where the coefficients sum to 1–in this case the sum is in the “distance” metric).
As a consequence, we can find the directional derivative in any direction by changing the vector
v.

Definition 27.2 (The Directional Derivative). Let 𝑓(𝑥, 𝑦) be a differentiable function at (𝑎, 𝑏)
and v = (𝑣1

𝑣2
) a unit vector in the 𝑥𝑦 plane. Then, the directional derivative of 𝑓 at (𝑎, 𝑏) in

the direction of v is

𝐷v𝑓(𝑎, 𝑏) = (𝜕𝑓(𝑥,𝑦)
𝜕𝑥 |(𝑥,𝑦)=(𝑎,𝑏)

𝜕𝑓(𝑥,𝑦)
𝜕𝑦 |(𝑥,𝑦)=(𝑎,𝑏))(

𝑣1
𝑣2
)

Example 27.1. Compute the directional derivative of 𝑓(𝑥, 𝑦) = 3𝑥2 + 𝑦2 in the direction of
u = ( 1√

3 ,
√
2√
3) and v = ( 1√

2 , −
1√
2) at the point (2, 1).
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• calculate the directional derivatives
• graph the directional derivatives using contour plots and segments

# the function
target_fun <- function(x, y) {

3 * x^2 + y^2
}

# the gradient function
gradient_fun <- function(x, y) {

c(6*x, 2 * y)
}

# define the unit vectors u and v
u <- c(1 / sqrt(3), sqrt(2/3))
v <- c(1 / sqrt(2), -1 / sqrt(2))

# create a set of gridpoints for plotting the function
N <- 50
x <- seq(-10, 10, length.out = N)
y <- seq(-10, 10, length.out = N)

dat <- expand_grid(x = x, y = y) %>%
mutate(z = target_fun(x, y))

# define the point (a, b)
a <- 2
b <- 1

# directional derivative of f in the direction of u
Du_ab <- sum(gradient_fun(a, b) * u)
Du_ab

[1] 8.561196

Dv_ab <- sum(gradient_fun(a, b) * v)
Dv_ab

[1] 7.071068
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q <- c(1, 0)
Dq_ab <- sum(gradient_fun(a, b) * q)
Dq_ab

[1] 12

# generate the plot
ggplot(dat, aes(x = x, y = y, z = z)) +

geom_contour() +
geom_point(aes(x = a, y = b)) +
geom_segment(aes(x = a, y = b, xend = a + u[1] * Du_ab, yend = b + u[2] * Du_ab),

arrow = arrow(length = unit(0.1, "in"))) +
geom_segment(aes(x = a, y = b, xend = a + v[1] * Dv_ab, yend = b + v[2] * Dv_ab),

arrow = arrow(length = unit(0.1, "in")), color = "orange") +
geom_segment(aes(x = a, y = b, xend = a + gradient_fun(a, b)[1], yend = b + gradient_fun(a, b)[2]),

arrow = arrow(length = unit(0.1, "in")), color = "red")
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27.1 The Gradient

The directional derivative is a dot product of the partial derivatives and a unit vector. The
gradient is similar, but rather than return a single value (a number), the gradient returns a
vector at a point (𝑎, 𝑏).

Definition 27.3 (The Gradient). Let 𝑓(𝑥, 𝑦) be a differentiable function at (𝑎, 𝑏). Then, the
gradient of 𝑓 at (𝑎, 𝑏) is

∇𝑓(𝑎, 𝑏) = (𝜕𝑓(𝑥,𝑦)
𝜕𝑥 |(𝑥,𝑦)=(𝑎,𝑏)

𝜕𝑓(𝑥,𝑦)
𝜕𝑦 |(𝑥,𝑦)=(𝑎,𝑏))

= 𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 |(𝑥,𝑦)=(𝑎,𝑏)e1 +

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 |(𝑥,𝑦)=(𝑎,𝑏)e2,

where e1 = (1
0) and e2 = (0

1) are the standard basis vectors in ℛ2.

Notice that the directional derivative at the point (𝑎, 𝑏) can be calculated using the gradient
where

𝐷v𝑓(𝑎, 𝑏) = ∇𝑓(𝑎, 𝑏) ⋅ v

= (𝜕𝑓(𝑥,𝑦)
𝜕𝑥 |(𝑥,𝑦)=(𝑎,𝑏)

𝜕𝑓(𝑥,𝑦)
𝜕𝑦 |(𝑥,𝑦)=(𝑎,𝑏))(

𝑣1
𝑣2
)

the directional derivative is the dot product of the gradient ∇𝑓(𝑎, 𝑏) at the point (𝑎, 𝑏) with
the unit vector v.

Example 27.2. Compute the gradient of 𝑓(𝑥, 𝑦) = 3𝑥2 + 𝑦2 at the point (3, 1).

• calculate the gradient
• graph the gradient using contour plots and segments

The gradient is critical in data science because is the tool that allows for finding the set of
parameters for a given model that are “most likely” given the data. The gradient has the
property in that at each point (𝑎, 𝑏) where 𝑓(𝑥, 𝑦) is differentiable, the gradient points in the
direction of the maximum rate of change.

Theorem 27.1 (The gradient and rates of change). Let 𝑓(𝑥, 𝑦) be a differentiable function at
(𝑎, 𝑏) with ∇𝑓(𝑎, 𝑏) ≠ 0. Then,
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1) 𝑓 has its maximum rate of increase at the point (𝑎, 𝑏) in the direction of the gradient
∇𝑓(𝑎, 𝑏). Because the gradient is a weighted sum of the partial derivatives and the unit
vector in the direction of the maximum change, the magnitude of the rate of change is
‖∇𝑓(𝑎, 𝑏)‖ which is the length of the gradient vector.

2) 𝑓 has its maximum rate of decrease at the point (𝑎, 𝑏) in the direction of the gradi-
ent −∇𝑓(𝑎, 𝑏). The rate of change in the direction of maximum rate of decrease is
−‖∇𝑓(𝑎, 𝑏)‖.

3) The directional derivative is 0 in any direction orthogonal to ∇𝑓(𝑎, 𝑏).

Example 27.3. Consider the function 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑥𝑦 + 𝑦2. At the point (3, 1), what is
the direction of steepest descent? Steepest ascent?

• graph the function as contours and plot the gradient as a segment

27.1.1 The gradient and the tangent line

Theorem 27.1 states that the directional derivative at the point (𝑎, 𝑏) is 0 in any direction
that is orthogonal to ∇𝑓(𝑎, 𝑏). Because the directional derivative is the rate of change of the
function in the direction of v, the directional derivative being 0 means that the function 𝑓(𝑥, 𝑦)
is not is not changing in the direction of the vector v. Therefore, we know that the vector v
and the vector ∇𝑓(𝑥, 𝑦)|(𝑎,𝑏) are orthogonal because the definition of the directional derivative
in Definition 27.2 states that

𝐷v𝑓(𝑎, 𝑏) = ∇𝑓(𝑎, 𝑏) ⋅ v = (∇𝑓(𝑎, 𝑏))′ v = 0

which is only true if the gradient ∇𝑓(𝑎, 𝑏) is orthogonal to v. Because the vector v points
in the direction of 0 change in 𝑓(𝑥, 𝑦), the vector v is a tangent line to the level curve. See
drawing

Using this, one can calculate the tangent to the level curve at the point (𝑎, 𝑏) as the dot-product
equation

(𝑓𝑥(𝑥, 𝑦) 𝑓𝑦(𝑥, 𝑦))(
𝑥 − 𝑎
𝑦 − 𝑏) = 𝑓𝑥(𝑥 − 𝑎) + 𝑓𝑦(𝑦 − 𝑏) = 0.

Example 27.4. For the function 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑥𝑦 + 𝑦3, find a vector orthogonal to the
gradient ∇𝑓(𝑎, 𝑏) at the point (𝑎, 𝑏) = (2, 1).
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27.1.2 The gradient in higher dimensions

We can extend the gradient to higher dimensional functions. Let x = (𝑥1 𝑥2 ⋯ 𝑥𝑛)
′ be a

vector in ℛ𝑛. Then the gradient of 𝑓 at a point a = (𝑎1, 𝑎2,… , 𝑎𝑛) is

∇𝑓(a) =
⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑓(x)
𝜕𝑥1

|x=a
𝜕𝑓(x)
𝜕𝑥2

|x=a
⋮

𝜕𝑓(x)
𝜕𝑥𝑛

|x=a

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑓𝑥1
(a)

𝑓𝑥2
(a)
⋮

𝑓𝑥𝑛
(a)

⎞⎟⎟⎟⎟
⎠
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28 Tangent planes and linear approximations

library(tidyverse)
library(plotly)
library(dasc2594)
set.seed(2021)

Let 𝑓(x) be a differentiable function at a point a. Because the function is differentiable at a,
this means that all paths 𝑃a that approach the point a from all directions all take on values
𝑓(𝑃a) that are “close” to 𝑓(a). Mathematically, we describe this as smoothness. A more
explicit description says that as the paths 𝑃a get very close to a, the space over which these
paths are defined starts to look more and more like a flat surface–the tangent plane.

Example 28.1. For this example, we plot the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 which has gradient

∇𝑓(𝑥, 𝑦) = (2𝑥
2𝑦)

# f(x, y)
target_fun <- function(x, y) {

return(x^2 + y^2)
}
# gradient f(x, y)
grad_fun <- function(x, y) {

c(2 * x, 2 * y) # notice that the return value is a vector
}
# plot
plot_tangent_plane(target_fun = target_fun, grad_fun = grad_fun, a=-1, b = 1)
# zoomed in plot
plot_tangent_plane(target_fun = target_fun, grad_fun = grad_fun, a=-1, b = 1, xlim = c(-1.5, 0.5), ylim = c(0.5, 1.5))
# super zoomed in plot
plot_tangent_plane(target_fun = target_fun, grad_fun = grad_fun, a=-1, b = 1, xlim = c(-1.1, -0.9), ylim = c(0.9, 1.1))
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A consequence of this result that when you zoom in on a differentiable function the function
looks like a flat plane is that the function 𝑓(𝑥, 𝑦) can be approximated locally as a linear
function (local approximation just means that if you are really “close” to the point (𝑎, 𝑏) that
the function will behave like a tangent plane if the function is differentiable). Intuitively, this
makes sense as if the derivative exists, the directional derivatives are just vectors and a linear
combination of vectors (in ℛ2) produces a tangent plane (in higher dimensions, this is called
a hyperplane). This means that if the function 𝑓(𝑥, 𝑦) is differentiable at the point (𝑎, 𝑏),
then 𝑓(𝑥, 𝑦) for points (𝑥, 𝑦) close to (𝑎, 𝑏) is approximated by the linear tangent plane.

Notice in the code above that there are two functions needed to calculate the tangent plane:
the function 𝑓(𝑥, 𝑦) and the gradient ∇𝑓(𝑥, 𝑦). This can be seen in the definition of the tangent
plane.

Definition 28.1 (The Tangent plane). Let 𝑓(𝑥, 𝑦) be a differentiable function at the point
(𝑎, 𝑏). Then the tangent plane to the surface defined by the function 𝑓(𝑥, 𝑦) at the point (𝑎, 𝑏)
is given by the equation

𝑧 = 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏)

= 𝑓(𝑎, 𝑏) + ∇𝑓(𝑥, 𝑦)|(𝑎,𝑏) ⋅ (
𝑥 − 𝑎
𝑦 − 𝑏)

= 𝑓(𝑎, 𝑏) + (∇𝑓(𝑥, 𝑦)|(𝑎,𝑏))′ (
𝑥 − 𝑎
𝑦 − 𝑏)

,
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where the tangent plane is defined as the dot product of the graidient vector ∇𝑓(𝑥, 𝑦)|(𝑎,𝑏)
evaluated at the point (𝑎, 𝑏) and the vector (𝑥 − 𝑎

𝑦 − 𝑏) that is the coordinate-wise distance of

the point (𝑥, 𝑦) from the point (𝑎, 𝑏).

Example 28.2. Find the equation for the tangent plane for the function 𝑓(𝑥, 𝑦) = 𝑥2 cos(𝑦)−
𝑦2 cos(𝑥) at the point (𝜋2 , 𝑝𝑖

4 )

• calculate by hand
• plot using plot_tangent_plane()

This leads to the linearization equation for functions of 𝑛 variables.

Definition 28.2 (The Linearization of a Function). Let 𝑓(x) be a differentiable function at
the point a = (𝑎1, 𝑎2,… , 𝑎𝑛)′ for a function of inputs x = (𝑥1, 𝑥2,… , 𝑥𝑛)′ ∈ ℛ𝑛. Then the
linearization of the function 𝑓(x) at the point a is given by the equation

𝐿(x) = 𝑓(a) + ∇𝑓(x)|a ⋅ (x − a)
= 𝑓(a) + (∇𝑓(x)|a)

′ (x − a)

The quality of the linearization is high for points “close” to a and has higher error (defined as
‖𝐿(x) − 𝑓(x)‖) as x gets further from a.

For points x “close” to the point a, the exact difference in the function 𝑧 = 𝑓(x) is given by
Δ𝑧 = 𝑓(x) − 𝑓(a). Plugging in the linear approximation, the differential 𝑑𝑧 = 𝐿(x) − 𝑓(a) is

the linear approximation to the exact different Δ𝑧. Define 𝑑x =
⎛⎜⎜⎜⎜
⎝

𝑑𝑥1
𝑑𝑥2
⋮

𝑑𝑥𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑥1 − 𝑎1
𝑥2 − 𝑎2

⋮
𝑥𝑛 − 𝑎𝑛

⎞⎟⎟⎟⎟
⎠

as the

set of changes in each of the 𝑛 coordinates with respect to the standard basis {e1, e2,… , e𝑛}
so that the linear change 𝑑𝑧 of 𝑓(x) at a is given by

𝑑𝑧 = ∇𝑓(x)|a ⋅ (x − a)
= ∇𝑓(x)|a ⋅ 𝑑x

=
𝑛

∑
𝑖=1

𝜕𝑓(x)
𝜕𝑥𝑖

𝑑𝑥𝑖,
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where the last term is a sum of the linear approximation in each of the 𝑖 = 1,… , 𝑛 coordinate
directions.

Example 28.3. Approximate the linear change of the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 − 3𝑥𝑦2𝑧2 −
4𝑧2 at the point (𝑎, 𝑏, 𝑐) = (1,−2,−1) evaluated at the point (𝑥, 𝑦, 𝑧) = (0.95,−2.05,−1.05).
Compare this to the exact value of the function 𝑓(𝑥, 𝑦, 𝑧)
First, we find the gradient

∇𝑓(𝑥, 𝑦, 𝑧) = ⎛⎜
⎝

2𝑥 − 3𝑦2𝑧2
−6𝑥𝑦𝑧2

−6𝑥𝑦2𝑧 − 8𝑧
⎞⎟
⎠

and evaluate the gradient at (𝑎, 𝑏, 𝑐) = (1,−2,−1) to get

∇𝑓(1,−2,−1) = ⎛⎜
⎝

2(1) − 3(−2)2(−1)2
−6(1)(−2)(−1)2

−6(1)(−2)2(−1) − 8(−1)
⎞⎟
⎠

= ⎛⎜
⎝

−10
12
32

⎞⎟
⎠

The function evaluated at the point (𝑎, 𝑏, 𝑐) is 𝑓(1,−2,−1) = (1)2−3(1)(−2)2(−1)2−4(−1)2 =
−15.
Therefore, the linear approximation 𝐿(𝑥, 𝑦, 𝑧) of 𝑓(𝑥, 𝑦, 𝑧) at the point (𝑎, 𝑏, 𝑐) is

𝐿(𝑥, 𝑦, 𝑧) = 𝑓(𝑎, 𝑏, 𝑐) + ∇𝑓(𝑎, 𝑏, 𝑐) ⋅ ⎛⎜
⎝

𝑥 − 1
𝑦 − (−2)
𝑧 − (−1)

⎞⎟
⎠

= −15 + 10(𝑥 − 1) − 12(𝑦 + 2) − 32(𝑧 + 1)

The linear approximation evaluated at the point (0.95,−2.05,−1.05) is

𝐿(0.95,−2.05,−1.05) = −15 + 10(0.95 − 1) − 12(−2.05 + 2) − 32(−1.05 + 1) = −16.7.

Compared to the true value of the function 𝑓(𝑥, 𝑦, 𝑧) is

𝑓(0.95,−2.05,−1.05) = (1.05)2 − 3(1.05)(−2.05)2(−1.05)2 − 4(−1.05)2 = −16.71228,

which gives an approximation error of 𝑓(𝑥, 𝑦, 𝑧) − 𝐿(𝑥, 𝑦, 𝑧) = −16.7122803 − −16.7 =
−0.0122803
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target_fun <- function(x, y, z) {
x^2 - 3 * x * y^2 * z^2 - 4 * z^2

}

grad_fun <- function(x, y, z) {
c(2*x - 3 * y^2 * z^2,
-6 * x * y * z^2,
-6 * x * y^2 * z - 8 * z)

}

grad_fun(1, -2, -1)

[1] -10 12 32

target_fun(0.95, -2.05, -1.05)

[1] -16.71228

linearization <- function(target_fun, grad_fun, x, y, z, a, b, c) {
target_fun(a, b, c) + sum(grad_fun(a, b, c) * c(x - a, y - b, z - c))

}

linearization(target_fun, grad_fun, 0.95, -2.05, -1.05, 1, -2, -1)

[1] -16.7

target_fun(0.95, -2.05, -1.05)

[1] -16.71228

# approximation error
target_fun(0.95, -2.05, -1.05) - linearization(target_fun, grad_fun, 0.95, -2.05, -1.05, 1, -2, -1)

[1] -0.01228031
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29 Minimums and Maximums

library(tidyverse)
library(plotly)
library(dasc2594)
set.seed(2021)

In general, we talk about finding either minimums or maximum values of a function. For
simplicity, we focus here on finding the minimum value of a function 𝑓(⋅) because finding the
maximum value of 𝑓(⋅) is equivalent to finding the minimum value of −𝑓(⋅).
To characterize these minimum values, we consider two different types of minimums: local
minimums and global minimums. For now, we focus on functions of two variables but these
ideas are similar for functions of many variables.

29.1 Local minimums

A local minimum of the function 𝑓(𝑥, 𝑦) is a point (𝑎, 𝑏) where the values of the function 𝑓(𝑎, 𝑏)
evaluated at (𝑎, 𝑏) is less than or equal to the function 𝑓(𝑎 +Δ𝑥, 𝑏 +Δ𝑦) at any nearby point
(𝑎 + Δ𝑥, 𝑏 + Δ𝑦), where Δ𝑥 and Δ𝑦 are very small values.

Definition 29.1. Let (𝑎, 𝑏) be a point in the domian 𝒟 of the function 𝑓(𝑥, 𝑦). If there exists
an 𝜖 > 0 such that ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ < 𝜖 (the point (𝑥, 𝑦) is close to the point (𝑎, 𝑏) for a given
disk of radius 𝜖 at the point (𝑎, 𝑏)), then if 𝑓(𝑎, 𝑏) ≤ 𝑓(𝑥, 𝑦), the point (𝑎, 𝑏) is called a local
minimum value of the function 𝑓(𝑥, 𝑦).

In terms of finding a minimum of a surface, the local minimum is any point on the surface from
which one cannot walk downhill if one can only take small steps. Like in univariate functions,
local minimums also have a relationship to the partial derivatives.

Theorem 29.1. If 𝑓(𝑥, 𝑦) has a local minimum at the point (𝑎, 𝑏) and 𝑓(𝑥, 𝑦) is a differentiable
function at (𝑎, 𝑏), then the partial derivatives 𝜕𝑓(𝑥,𝑦)

𝜕𝑥 |(𝑎,𝑏) = 𝑓𝑥(𝑎, 𝑏) = 0 and 𝜕𝑓(𝑥,𝑦)
𝜕𝑦 |(𝑎,𝑏) =

𝑓𝑦(𝑎, 𝑏) = 0
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Note: the converse is not necessarily true: just because 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0, this
doesn’t mean that we have a minimum point at (𝑎, 𝑏).
As stated above, the fact that the partial derivatives 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0 does not
imply that the point (𝑎, 𝑏) is a local minimum. Instead, the partial derivatives being 0 only
implies that (𝑎, 𝑏) is a critical point of the function 𝑓(𝑥, 𝑦).

Definition 29.2. The point (𝑎, 𝑏) is a critical point of the function 𝑓(𝑥, 𝑦) if either

a) 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0 or

b) at least one partial derivative does not exist at (𝑎, 𝑏).

Example 29.1. find the critical points of 𝑓(𝑥, 𝑦) = 𝑥𝑦(𝑥−3)(𝑦−4). * plot the critical points
using plotly()

f <- function(x, y) {
x * y * (x - 3) * (y - 4)

}
x <- seq(3/2 + -3, 3/2 + 3, length.out = 40)
y <- seq(2 + -3, 2 + 3, length.out = 40)

critical_points <- data.frame(x = c(3/2, 0, 3, 0, 3), y = c(2, 0, 0, 4, 4)) %>%
mutate(z = f(x, y), color = c("red", rep("orange", 4)), name = c("local minimum", rep("saddle point", 4)))

dat <- expand_grid(x, y) %>%
mutate(z = f(x, y))

dat %>%
ggplot(aes(x = x, y = y, z = z)) +
geom_contour(bins = 40) +
coord_fixed(ratio = 1) +
geom_point(data = critical_points, aes(color = name), size = 2) +
scale_color_manual(values = critical_points$color)
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plot_ly(x = x, y = y, z = matrix(dat$z, 40, 40)) %>%
add_surface(

contours = list(
z = list(

show=TRUE,
usecolormap=TRUE,
highlightcolor="#ff0000",
project=list(z=TRUE)))) %>%

add_trace(x = critical_points$x, y = critical_points$y,
z = critical_points$z,
mode = "markers", type = "scatter3d",
marker = list(size = 5,

color = c("red", rep("orange", 4)),
symbol = 104),

name = c("local maximum", rep("saddle point", 4)))
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If a critical point isn’t a local minimum/maximum, what else could this point be? One possible
shape is what is called a saddle point. A saddle point is one in which the function 𝑓(𝑥, 𝑦) is
increasing in one direction (say, along the x-axis) and decreasing along another direction (say,
the y-axis). The surface is often said to resemble the shape of a saddle (or a Pringles chip).
An example saddle point is shown in the plot below.

f <- function(x, y) {
x^2 - y^2

}
x <- seq(-1, 1, length.out = 40)
y <- seq(-1, 1, length.out = 40)
critical_points <- data.frame(x = 0, y = 0) %>%

mutate(z = f(x, y))
dat <- expand_grid(x, y) %>%

mutate(z = f(x, y))

plot_ly(x = x, y = y, z = matrix(dat$z, 40, 40)) %>%
add_surface(

contours = list(
z = list(

show=TRUE,
usecolormap=TRUE,
highlightcolor="#ff0000",
project=list(z=TRUE)))) %>%
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add_trace(x = critical_points$x, y = critical_points$y,
z = critical_points$z,
mode = "markers", type = "scatter3d",
marker = list(size = 5,

color = "red",
symbol = 104),

name = "saddle point")

Definition 29.3 (A Saddle Point). A saddle point of a differentiable function 𝑓(𝑥, 𝑦) is a
critical point (𝑎, 𝑏) of 𝑓(𝑥, 𝑦) where for all 𝜖 > 0 there exists points (𝑥, 𝑦) within the disk
of radius 𝜖 of the point (𝑎, 𝑏) (i.e., ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ < 𝜖) where 𝑓(𝑥, 𝑦) > 𝑓(𝑎, 𝑏) and where
𝑓(𝑥, 𝑦) < 𝑓(𝑎, 𝑏). In other words, there are points nearby the critical point that have both
higher and lower values than the value 𝑓(𝑎, 𝑏).

Finding critical points is a first step in finding minimums, however, we need a method to deter-
mine whether a critical point is a local minimum/maximum or a saddle point. To determine
this, the second derivative test is useful.

Theorem 29.2 (The Second Derivative Test). Let 𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0 so that the point
(𝑎, 𝑏) is a critical point. Also let the 𝑓(𝑥, 𝑦) be second-order differentiable (the second partial
derivatives exists) throughout the open disk ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ < 𝜖 for some 𝜖 > 0. Then

274



1) If 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏)−(𝑓𝑥𝑦(𝑎, 𝑏))2 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) < 0, then 𝑓(𝑥, 𝑦) has a local maximum
at (𝑎, 𝑏).

2) If 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏)−(𝑓𝑥𝑦(𝑎, 𝑏))2 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) > 0, then 𝑓(𝑥, 𝑦) has a local minimum
at (𝑎, 𝑏).

3) If 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − (𝑓𝑥𝑦(𝑎, 𝑏))2 < 0, then 𝑓(𝑥, 𝑦) has a saddle point at (𝑎, 𝑏).
4) If 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − (𝑓𝑥𝑦(𝑎, 𝑏))2 = 0, the test is inconclusive.

Example 29.2. find the critical points of 𝑓(𝑥, 𝑦) = 𝑥𝑦(𝑥 − 3)(𝑦 − 4) and determine if they
are local maxima, minima, saddle points, or undetermined.

Example 29.3. find the critical points of 𝑓(𝑥, 𝑦) = 𝑥4 + 𝑦4 and determine if they are local
maxima, minima, saddle points, or undetermined.

f <- function(x, y) {
x^4 + y^4

}
x <- seq(-1, 1, length.out = 40)
y <- seq(-1, 1, length.out = 40)
critical_points <- data.frame(x = 0, y = 0) %>%

mutate(z = f(x, y))
dat <- expand_grid(x, y) %>%

mutate(z = f(x, y))

plot_ly(x = x, y = y, z = matrix(dat$z, 40, 40)) %>%
add_surface(

contours = list(
z = list(

show=TRUE,
usecolormap=TRUE,
highlightcolor="#ff0000",
project=list(z=TRUE)))) %>%

add_trace(x = critical_points$x, y = critical_points$y,
z = critical_points$z,
mode = "markers", type = "scatter3d",
marker = list(size = 5,

color = "red",
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symbol = 104),
name = "saddle point")

29.2 Global maximums and minimums

We have shown how you can find critical points (𝑎, 𝑏) by finding points that have 0 partial
derivatives in each direction (𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0) and we have shown how to characterize
these critical points using the second derivative test. In data science, we are often interested
in finding the “best” model, not just the “best local” model. So a question arises is whether
the local minima/maxima that we find are the global minima/maxima. To determine this, we
have to define the global minima/maxima.

Definition 29.4. If 𝑓(𝑥, 𝑦) is a function defined over a domain (or a subset of the domain)
𝒟 ∈ ℛ2 that contains the point (𝑎, 𝑏), we say

• (𝑎, 𝑏) is a global maximum if 𝑓(𝑎, 𝑏) ≥ 𝑓(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝒟 and

• (𝑎, 𝑏) is a global minimum if 𝑓(𝑎, 𝑏) ≤ 𝑓(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝒟.

Thus, once you have found all the critical points, you also need to check all the boundary
points for the domain (or subdomain) 𝒟 as the global minimum/maximum might lie on the
boundary.
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In general finding the global maximum/minimum points can be done by applying the following
procedure:

Let 𝑓(𝑥, 𝑦) be a function on a closed (the set contains its boundary points) and bounded (the
set is not infinite) set. Then, the global minima/maxima can be found by

1) Determining the values 𝑓(𝑥, 𝑦) at all the critical points.

2) Determining the values of 𝑓(𝑥, 𝑦) at all the boundary points of 𝒟.

3) Finding the minimum/maximum of the set of function values from 1) and 2).

Example 29.4. Let 𝑓(𝑥, 𝑦) = 𝑥2 − 4𝑥𝑦 + 𝑦2 over the region [−2, 2] × [−2, 2]

In data science problems, it is often difficult to analyze the functions analytically (using the
tools of calculus directly). Instead, one can use numeric techniques to find minima and maxima.
Two techniques that we will discuss are grid search and gradient descent.

29.3 Grid search optimization

If the number of input variables in the function is small, one can find global minima and
maxima using grid search. To find a global minima/maxima in ℛ2, one creates a grid over
the domain 𝒟 and evaluates the function 𝑓(𝑥, 𝑦) at these grid points and finds the numerical
solution.

Example 29.5. Let 𝑓(𝑥, 𝑦) = 𝑥2 − 2𝑥𝑦 + 𝑦2 over the region [−2, 2] × [−2, 2]

target_fun <- function(x, y) {
x^2 - 4 * x * y + y^2

}
# N is the grid size
N <- 1000
x <- seq(-2, 2, length.out = N)
y <- seq(-2, 2, length.out = N)
dat <- expand_grid(x = x, y = y) %>%

mutate(z = target_fun(x, y))
# find the minimum
dat %>%

filter(z == min(z))
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# A tibble: 2 x 3
x y z

<dbl> <dbl> <dbl>
1 -2 -2 -8
2 2 2 -8

# find the minimum
dat %>%

filter(z == max(z))

# A tibble: 2 x 3
x y z

<dbl> <dbl> <dbl>
1 -2 2 24
2 2 -2 24

29.4 Gradient Descent

Another method to find minima/maxima is gradient descent.
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